|
import fitz |
|
import gradio as gr |
|
import requests |
|
from bs4 import BeautifulSoup |
|
import urllib.parse |
|
import random |
|
import os |
|
from dotenv import load_dotenv |
|
import shutil |
|
import tempfile |
|
|
|
load_dotenv() |
|
|
|
|
|
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN") |
|
|
|
def clear_cache(): |
|
try: |
|
|
|
cache_dir = tempfile.gettempdir() |
|
shutil.rmtree(os.path.join(cache_dir, "gradio"), ignore_errors=True) |
|
|
|
|
|
|
|
if os.path.exists("output_summary.pdf"): |
|
os.remove("output_summary.pdf") |
|
|
|
|
|
|
|
print("Cache cleared successfully.") |
|
return "Cache cleared successfully." |
|
except Exception as e: |
|
print(f"Error clearing cache: {e}") |
|
return f"Error clearing cache: {e}" |
|
|
|
_useragent_list = [ |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", |
|
] |
|
|
|
|
|
def extract_text_from_webpage(html): |
|
print("Extracting text from webpage...") |
|
soup = BeautifulSoup(html, 'html.parser') |
|
for script in soup(["script", "style"]): |
|
script.extract() |
|
text = soup.get_text() |
|
lines = (line.strip() for line in text.splitlines()) |
|
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) |
|
text = '\n'.join(chunk for chunk in chunks if chunk) |
|
print(f"Extracted text length: {len(text)}") |
|
return text |
|
|
|
|
|
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None): |
|
"""Performs a Google search and returns the results.""" |
|
print(f"Searching for term: {term}") |
|
escaped_term = urllib.parse.quote_plus(term) |
|
start = 0 |
|
all_results = [] |
|
max_chars_per_page = 8000 |
|
|
|
with requests.Session() as session: |
|
while start < num_results: |
|
print(f"Fetching search results starting from: {start}") |
|
try: |
|
|
|
user_agent = random.choice(_useragent_list) |
|
headers = { |
|
'User-Agent': user_agent |
|
} |
|
print(f"Using User-Agent: {headers['User-Agent']}") |
|
|
|
resp = session.get( |
|
url="https://www.google.com/search", |
|
headers=headers, |
|
params={ |
|
"q": term, |
|
"num": num_results - start, |
|
"hl": lang, |
|
"start": start, |
|
"safe": safe, |
|
}, |
|
timeout=timeout, |
|
verify=ssl_verify, |
|
) |
|
resp.raise_for_status() |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching search results: {e}") |
|
break |
|
|
|
soup = BeautifulSoup(resp.text, "html.parser") |
|
result_block = soup.find_all("div", attrs={"class": "g"}) |
|
if not result_block: |
|
print("No more results found.") |
|
break |
|
for result in result_block: |
|
link = result.find("a", href=True) |
|
if link: |
|
link = link["href"] |
|
print(f"Found link: {link}") |
|
try: |
|
webpage = session.get(link, headers=headers, timeout=timeout) |
|
webpage.raise_for_status() |
|
visible_text = extract_text_from_webpage(webpage.text) |
|
if len(visible_text) > max_chars_per_page: |
|
visible_text = visible_text[:max_chars_per_page] + "..." |
|
all_results.append({"link": link, "text": visible_text}) |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching or processing {link}: {e}") |
|
all_results.append({"link": link, "text": None}) |
|
else: |
|
print("No link found in result.") |
|
all_results.append({"link": None, "text": None}) |
|
start += len(result_block) |
|
print(f"Total results fetched: {len(all_results)}") |
|
return all_results |
|
|
|
|
|
def format_prompt(query, search_results, instructions): |
|
formatted_results = "" |
|
for result in search_results: |
|
link = result["link"] |
|
text = result["text"] |
|
if link: |
|
formatted_results += f"URL: {link}\nContent: {text}\n{'-' * 80}\n" |
|
else: |
|
formatted_results += "No link found.\n" + '-' * 80 + '\n' |
|
|
|
prompt = f"{instructions}User Query: {query}\n\nWeb Search Results:\n{formatted_results}\n\nAssistant:" |
|
return prompt |
|
|
|
|
|
def generate_text(input_text, temperature=0.7, repetition_penalty=1.0, top_p=0.9): |
|
print("Generating text using Hugging Face API...") |
|
endpoint = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3" |
|
headers = { |
|
"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}", |
|
"Content-Type": "application/json" |
|
} |
|
data = { |
|
"inputs": input_text, |
|
"parameters": { |
|
"max_new_tokens": 8000, |
|
"temperature": temperature, |
|
"repetition_penalty": repetition_penalty, |
|
"top_p": top_p |
|
} |
|
} |
|
|
|
try: |
|
response = requests.post(endpoint, headers=headers, json=data) |
|
response.raise_for_status() |
|
|
|
|
|
try: |
|
json_data = response.json() |
|
except ValueError: |
|
print("Response is not JSON.") |
|
return None |
|
|
|
|
|
if isinstance(json_data, list): |
|
|
|
generated_text = json_data[0].get("generated_text") if json_data else None |
|
elif isinstance(json_data, dict): |
|
|
|
generated_text = json_data.get("generated_text") |
|
else: |
|
print("Unexpected response format.") |
|
return None |
|
|
|
if generated_text is not None: |
|
print("Text generation complete using Hugging Face API.") |
|
print(f"Generated text: {generated_text}") |
|
return generated_text |
|
else: |
|
print("Generated text not found in response.") |
|
return None |
|
|
|
except requests.exceptions.RequestException as e: |
|
print(f"Error generating text using Hugging Face API: {e}") |
|
return None |
|
|
|
|
|
def read_pdf(file_obj): |
|
with fitz.open(file_obj.name) as document: |
|
text = "" |
|
for page_num in range(document.page_count): |
|
page = document.load_page(page_num) |
|
text += page.get_text() |
|
return text |
|
|
|
|
|
def format_prompt_with_instructions(text, instructions): |
|
prompt = f"{instructions}{text}\n\nAssistant:" |
|
return prompt |
|
|
|
|
|
def save_text_to_pdf(text, output_path): |
|
print(f"Saving text to PDF at {output_path}...") |
|
doc = fitz.open() |
|
page = doc.new_page() |
|
|
|
|
|
margin = 50 |
|
page_width = page.rect.width |
|
page_height = page.rect.height |
|
text_width = page_width - 2 * margin |
|
text_height = page_height - 2 * margin |
|
|
|
|
|
font_size = 9 |
|
line_spacing = 1 * font_size |
|
fontname = "times-roman" |
|
|
|
|
|
|
|
into lines that fit within the text_width |
|
lines = [] |
|
current_line = "" |
|
current_line_width = 0 |
|
words = text.split(" ") |
|
for word in words: |
|
word_width = fitz.get_text_length(word, fontname, font_size) |
|
if current_line_width + word_width <= text_width: |
|
current_line += word + " " |
|
current_line_width += word_width + fitz.get_text_length(" ", fontname, font_size) |
|
else: |
|
lines.append(current_line.strip()) |
|
current_line = word + " " |
|
current_line_width = word_width + fitz.get_text_length(" ", fontname, font_size) |
|
if current_line: |
|
lines.append(current_line.strip()) |
|
|
|
|
|
x = margin |
|
y = margin |
|
for line in lines: |
|
if y + line_spacing > text_height: |
|
|
|
page = doc.new_page() |
|
y = margin |
|
page.insert_text((x, y), line, fontname=fontname, fontsize=font_size) |
|
y += line_spacing |
|
|
|
doc.save(output_path) |
|
print(f"Text saved to PDF at {output_path}") |
|
|
|
|
|
def process_input(query_or_file, is_pdf, instructions, api_key): |
|
load_dotenv() |
|
|
|
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN") |
|
|
|
if is_pdf: |
|
print(f"Processing PDF: {query_or_file.name}") |
|
input_text = read_pdf(query_or_file) |
|
else: |
|
print(f"Processing search query: {query_or_file}") |
|
search_results = google_search(query_or_file) |
|
input_text = "\n\n".join(result["text"] for result in search_results if result["text"]) |
|
|
|
|
|
chunk_size = 1024 |
|
text_chunks = [input_text[i:i + chunk_size] for i in range(0, len(input_text), chunk_size)] |
|
print(f"Total number of chunks: {len(text_chunks)}") |
|
|
|
|
|
concatenated_summary = "" |
|
for chunk in text_chunks: |
|
prompt = format_prompt_with_instructions(chunk, instructions) |
|
chunk_summary = generate_text(prompt) |
|
concatenated_summary += f"{chunk_summary}\n\n" |
|
|
|
print("Final concatenated summary generated.") |
|
return concatenated_summary |
|
|
|
|
|
def clear_cache(): |
|
try: |
|
|
|
cache_dir = tempfile.gettempdir() |
|
shutil.rmtree(os.path.join(cache_dir, "gradio"), ignore_errors=True) |
|
|
|
|
|
|
|
if os.path.exists("output_summary.pdf"): |
|
os.remove("output_summary.pdf") |
|
|
|
|
|
|
|
print("Cache cleared successfully.") |
|
return "Cache cleared successfully." |
|
except Exception as e: |
|
print(f"Error clearing cache: {e}") |
|
return f"Error clearing cache: {e}" |
|
|
|
def summarization_interface(): |
|
with gr.Blocks() as demo: |
|
gr.Markdown("# PDF and Web Summarization Tool") |
|
|
|
with gr.Tab("Summarize PDF"): |
|
pdf_file = gr.File(label="Upload PDF", file_types=[".pdf"]) |
|
pdf_instructions = gr.Textbox(label="Instructions for Summarization", placeholder="Enter instructions for summarization", lines=3) |
|
pdf_summary_output = gr.Textbox(label="Summary Output") |
|
pdf_api_key = gr.Textbox(label="Hugging Face API Key", type="password") |
|
pdf_summarize_button = gr.Button("Generate Summary") |
|
pdf_clear_cache_button = gr.Button("Clear Cache") |
|
|
|
with gr.Tab("Summarize Web Search"): |
|
search_query = gr.Textbox(label="Enter Search Query", placeholder="Enter search query") |
|
search_instructions = gr.Textbox(label="Instructions for Summarization", placeholder="Enter instructions for summarization", lines=3) |
|
search_summary_output = gr.Textbox(label="Summary Output") |
|
search_api_key = gr.Textbox(label="Hugging Face API Key", type="password") |
|
search_summarize_button = gr.Button("Generate Summary") |
|
search_clear_cache_button = gr.Button("Clear Cache") |
|
|
|
|
|
pdf_summarize_button.click(fn=lambda file, instructions, api_key: process_input(file, True, instructions, api_key), inputs=[pdf_file, pdf_instructions, pdf_api_key], outputs=pdf_summary_output) |
|
search_summarize_button.click(fn=lambda query, instructions, api_key: process_input(query, False, instructions, api_key), inputs=[search_query, search_instructions, search_api_key], outputs=search_summary_output) |
|
pdf_clear_cache_button.click(fn=clear_cache, inputs=None, outputs=pdf_summary_output) |
|
search_clear_cache_button.click(fn=clear_cache, inputs=None, outputs=search_summary_output) |
|
|
|
return demo |
|
|
|
|
|
demo = summarization_interface() |
|
demo.launch() |