|
import os |
|
import json |
|
import re |
|
import gradio as gr |
|
import pandas as pd |
|
import requests |
|
import random |
|
import urllib.parse |
|
import spacy |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import numpy as np |
|
from typing import List, Dict |
|
from tempfile import NamedTemporaryFile |
|
from bs4 import BeautifulSoup |
|
from langchain.prompts import PromptTemplate |
|
from langchain.chains import LLMChain |
|
from langchain_core.prompts import ChatPromptTemplate |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_community.llms import HuggingFaceHub |
|
from langchain_core.documents import Document |
|
from sentence_transformers import SentenceTransformer |
|
|
|
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") |
|
|
|
|
|
sentence_model = SentenceTransformer('paraphrase-MiniLM-L6-v2') |
|
|
|
def load_spacy_model(): |
|
try: |
|
|
|
return spacy.load("en_core_web_sm") |
|
except OSError: |
|
|
|
os.system("python -m spacy download en_core_web_sm") |
|
|
|
return spacy.load("en_core_web_sm") |
|
|
|
|
|
nlp = load_spacy_model() |
|
|
|
class EnhancedContextDrivenChatbot: |
|
def __init__(self, history_size=10): |
|
self.history = [] |
|
self.history_size = history_size |
|
self.entity_tracker = {} |
|
|
|
def add_to_history(self, text): |
|
self.history.append(text) |
|
if len(self.history) > self.history_size: |
|
self.history.pop(0) |
|
|
|
|
|
doc = nlp(text) |
|
for ent in doc.ents: |
|
if ent.label_ not in self.entity_tracker: |
|
self.entity_tracker[ent.label_] = set() |
|
self.entity_tracker[ent.label_].add(ent.text) |
|
|
|
def get_context(self): |
|
return " ".join(self.history) |
|
|
|
def is_follow_up_question(self, question): |
|
doc = nlp(question.lower()) |
|
follow_up_indicators = set(['it', 'this', 'that', 'these', 'those', 'he', 'she', 'they', 'them']) |
|
return any(token.text in follow_up_indicators for token in doc) |
|
|
|
def extract_topics(self, text): |
|
doc = nlp(text) |
|
return [chunk.text for chunk in doc.noun_chunks] |
|
|
|
def get_most_relevant_context(self, question): |
|
if not self.history: |
|
return question |
|
|
|
|
|
combined_context = self.get_context() |
|
|
|
|
|
context_embedding = sentence_model.encode([combined_context])[0] |
|
question_embedding = sentence_model.encode([question])[0] |
|
|
|
|
|
similarity = cosine_similarity([context_embedding], [question_embedding])[0][0] |
|
|
|
|
|
if similarity < 0.3: |
|
return question |
|
|
|
|
|
return f"{combined_context} {question}" |
|
|
|
def process_question(self, question): |
|
contextualized_question = self.get_most_relevant_context(question) |
|
|
|
|
|
topics = self.extract_topics(question) |
|
|
|
|
|
if self.is_follow_up_question(question): |
|
|
|
contextualized_question = f"{self.get_context()} {question}" |
|
|
|
|
|
self.add_to_history(question) |
|
|
|
return contextualized_question, topics, self.entity_tracker |
|
|
|
def load_document(file: NamedTemporaryFile) -> List[Document]: |
|
"""Loads and splits the document into pages.""" |
|
loader = PyPDFLoader(file.name) |
|
return loader.load_and_split() |
|
|
|
def update_vectors(files): |
|
if not files: |
|
return "Please upload at least one PDF file." |
|
|
|
embed = get_embeddings() |
|
total_chunks = 0 |
|
|
|
all_data = [] |
|
for file in files: |
|
data = load_document(file) |
|
all_data.extend(data) |
|
total_chunks += len(data) |
|
|
|
if os.path.exists("faiss_database"): |
|
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) |
|
database.add_documents(all_data) |
|
else: |
|
database = FAISS.from_documents(all_data, embed) |
|
|
|
database.save_local("faiss_database") |
|
|
|
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files." |
|
|
|
def get_embeddings(): |
|
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
|
|
def clear_cache(): |
|
if os.path.exists("faiss_database"): |
|
os.remove("faiss_database") |
|
return "Cache cleared successfully." |
|
else: |
|
return "No cache to clear." |
|
|
|
def get_model(temperature, top_p, repetition_penalty): |
|
return HuggingFaceHub( |
|
repo_id="mistralai/Mistral-7B-Instruct-v0.3", |
|
model_kwargs={ |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"repetition_penalty": repetition_penalty, |
|
"max_length": 1000 |
|
}, |
|
huggingfacehub_api_token=huggingface_token |
|
) |
|
|
|
def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5): |
|
full_response = "" |
|
for i in range(max_chunks): |
|
try: |
|
chunk = model(prompt + full_response, max_new_tokens=max_tokens) |
|
chunk = chunk.strip() |
|
if chunk.endswith((".", "!", "?")): |
|
full_response += chunk |
|
break |
|
full_response += chunk |
|
except Exception as e: |
|
print(f"Error in generate_chunked_response: {e}") |
|
break |
|
return full_response.strip() |
|
|
|
def extract_text_from_webpage(html): |
|
soup = BeautifulSoup(html, 'html.parser') |
|
for script in soup(["script", "style"]): |
|
script.extract() |
|
text = soup.get_text() |
|
lines = (line.strip() for line in text.splitlines()) |
|
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) |
|
text = '\n'.join(chunk for chunk in chunks if chunk) |
|
return text |
|
|
|
_useragent_list = [ |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", |
|
] |
|
|
|
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None): |
|
escaped_term = urllib.parse.quote_plus(term) |
|
start = 0 |
|
all_results = [] |
|
max_chars_per_page = 8000 |
|
|
|
print(f"Starting Google search for term: '{term}'") |
|
|
|
with requests.Session() as session: |
|
while start < num_results: |
|
try: |
|
user_agent = random.choice(_useragent_list) |
|
headers = { |
|
'User-Agent': user_agent |
|
} |
|
resp = session.get( |
|
url="https://www.google.com/search", |
|
headers=headers, |
|
params={ |
|
"q": term, |
|
"num": num_results - start, |
|
"hl": lang, |
|
"start": start, |
|
"safe": safe, |
|
}, |
|
timeout=timeout, |
|
verify=ssl_verify, |
|
) |
|
resp.raise_for_status() |
|
print(f"Successfully retrieved search results page (start={start})") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error retrieving search results: {e}") |
|
break |
|
|
|
soup = BeautifulSoup(resp.text, "html.parser") |
|
result_block = soup.find_all("div", attrs={"class": "g"}) |
|
if not result_block: |
|
print("No results found on this page") |
|
break |
|
|
|
print(f"Found {len(result_block)} results on this page") |
|
for result in result_block: |
|
link = result.find("a", href=True) |
|
if link: |
|
link = link["href"] |
|
print(f"Processing link: {link}") |
|
try: |
|
webpage = session.get(link, headers=headers, timeout=timeout) |
|
webpage.raise_for_status() |
|
visible_text = extract_text_from_webpage(webpage.text) |
|
if len(visible_text) > max_chars_per_page: |
|
visible_text = visible_text[:max_chars_per_page] + "..." |
|
all_results.append({"link": link, "text": visible_text}) |
|
print(f"Successfully extracted text from {link}") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error retrieving webpage content: {e}") |
|
all_results.append({"link": link, "text": None}) |
|
else: |
|
print("No link found for this result") |
|
all_results.append({"link": None, "text": None}) |
|
start += len(result_block) |
|
|
|
print(f"Search completed. Total results: {len(all_results)}") |
|
|
|
if not all_results: |
|
print("No search results found. Returning a default message.") |
|
return [{"link": None, "text": "No information found in the web search results."}] |
|
|
|
return all_results |
|
|
|
def ask_question(question, temperature, top_p, repetition_penalty, web_search, chatbot): |
|
if not question: |
|
return "Please enter a question." |
|
|
|
model = get_model(temperature, top_p, repetition_penalty) |
|
embed = get_embeddings() |
|
|
|
if os.path.exists("faiss_database"): |
|
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) |
|
else: |
|
database = None |
|
|
|
max_attempts = 3 |
|
context_reduction_factor = 0.7 |
|
|
|
contextualized_question, topics, entity_tracker = chatbot.process_question(question) |
|
|
|
if web_search: |
|
search_results = google_search(contextualized_question) |
|
all_answers = [] |
|
|
|
for attempt in range(max_attempts): |
|
try: |
|
web_docs = [Document(page_content=result["text"], metadata={"source": result["link"]}) for result in search_results if result["text"]] |
|
|
|
if database is None: |
|
database = FAISS.from_documents(web_docs, embed) |
|
else: |
|
database.add_documents(web_docs) |
|
|
|
database.save_local("faiss_database") |
|
|
|
context_str = "\n".join([f"Source: {doc.metadata['source']}\nContent: {doc.page_content}" for doc in web_docs]) |
|
|
|
prompt_template = """ |
|
Answer the question based on the following web search results, conversation context, and entity information: |
|
Web Search Results: |
|
{context} |
|
Conversation Context: {conv_context} |
|
Current Question: {question} |
|
Topics: {topics} |
|
Entity Information: {entities} |
|
If the web search results don't contain relevant information, state that the information is not available in the search results. |
|
Provide a summarized and direct answer to the question without mentioning the web search or these instructions. |
|
Do not include any source information in your answer. |
|
""" |
|
|
|
prompt_val = ChatPromptTemplate.from_template(prompt_template) |
|
formatted_prompt = prompt_val.format( |
|
context=context_str, |
|
conv_context=chatbot.get_context(), |
|
question=question, |
|
topics=", ".join(topics), |
|
entities=json.dumps(entity_tracker) |
|
) |
|
|
|
full_response = generate_chunked_response(model, formatted_prompt) |
|
|
|
answer_patterns = [ |
|
r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:", |
|
r"Provide a concise and direct answer to the question:", |
|
r"Answer:", |
|
r"Provide a summarized and direct answer to the original question without mentioning the web search or these instructions:", |
|
r"Do not include any source information in your answer." |
|
] |
|
|
|
for pattern in answer_patterns: |
|
match = re.split(pattern, full_response, flags=re.IGNORECASE) |
|
if len(match) > 1: |
|
answer = match[-1].strip() |
|
break |
|
else: |
|
answer = full_response.strip() |
|
|
|
all_answers.append(answer) |
|
break |
|
|
|
except Exception as e: |
|
print(f"Error in ask_question (attempt {attempt + 1}): {e}") |
|
if "Input validation error" in str(e) and attempt < max_attempts - 1: |
|
print(f"Reducing context length for next attempt") |
|
elif attempt == max_attempts - 1: |
|
all_answers.append(f"I apologize, but I'm having trouble processing the query due to its length or complexity.") |
|
|
|
answer = "\n\n".join(all_answers) |
|
sources = set(doc.metadata['source'] for doc in web_docs) |
|
sources_section = "\n\nSources:\n" + "\n".join(f"- {source}" for source in sources) |
|
answer += sources_section |
|
|
|
return answer |
|
|
|
else: |
|
for attempt in range(max_attempts): |
|
try: |
|
if database is None: |
|
return "No documents available. Please upload documents or enable web search to answer questions." |
|
|
|
retriever = database.as_retriever() |
|
relevant_docs = retriever.get_relevant_documents(contextualized_question) |
|
context_str = "\n".join([doc.page_content for doc in relevant_docs]) |
|
|
|
if attempt > 0: |
|
words = context_str.split() |
|
context_str = " ".join(words[:int(len(words) * context_reduction_factor)]) |
|
|
|
prompt_template = """ |
|
Answer the question based on the following context: |
|
Context: |
|
{context} |
|
Current Question: {question} |
|
If the context doesn't contain relevant information, state that the information is not available. |
|
Provide a summarized and direct answer to the question. |
|
Do not include any source information in your answer. |
|
""" |
|
|
|
prompt_val = ChatPromptTemplate.from_template(prompt_template) |
|
formatted_prompt = prompt_val.format(context=context_str, question=contextualized_question) |
|
|
|
full_response = generate_chunked_response(model, formatted_prompt) |
|
|
|
answer_patterns = [ |
|
r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:", |
|
r"Provide a concise and direct answer to the question:", |
|
r"Answer:", |
|
r"Provide a summarized and direct answer to the original question without mentioning the web search or these instructions:", |
|
r"Do not include any source information in your answer." |
|
] |
|
|
|
for pattern in answer_patterns: |
|
match = re.split(pattern, full_response, flags=re.IGNORECASE) |
|
if len(match) > 1: |
|
answer = match[-1].strip() |
|
break |
|
else: |
|
answer = full_response.strip() |
|
|
|
return answer |
|
|
|
except Exception as e: |
|
print(f"Error in ask_question (attempt {attempt + 1}): {e}") |
|
if "Input validation error" in str(e) and attempt < max_attempts - 1: |
|
print(f"Reducing context length for next attempt") |
|
elif attempt == max_attempts - 1: |
|
return f"I apologize, but I'm having trouble processing your question due to its length or complexity. Could you please try rephrasing it more concisely?" |
|
|
|
return "An unexpected error occurred. Please try again later." |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Context-Driven Conversational Chatbot") |
|
|
|
with gr.Row(): |
|
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"]) |
|
update_button = gr.Button("Upload PDF") |
|
|
|
update_output = gr.Textbox(label="Update Status") |
|
update_button.click(update_vectors, inputs=[file_input], outputs=update_output) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
chatbot = gr.Chatbot(label="Conversation") |
|
question_input = gr.Textbox(label="Ask a question") |
|
submit_button = gr.Button("Submit") |
|
with gr.Column(scale=1): |
|
temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1) |
|
top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1) |
|
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1) |
|
web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False) |
|
|
|
context_driven_chatbot = EnhancedContextDrivenChatbot() |
|
|
|
def chat(question, history, temperature, top_p, repetition_penalty, web_search): |
|
answer = ask_question(question, temperature, top_p, repetition_penalty, web_search, context_driven_chatbot) |
|
history.append((question, answer)) |
|
return "", history |
|
|
|
submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox], outputs=[question_input, chatbot]) |
|
|
|
clear_button = gr.Button("Clear Cache") |
|
clear_output = gr.Textbox(label="Cache Status") |
|
clear_button.click(clear_cache, inputs=[], outputs=clear_output) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|
|
|