Spaces:
Build error
Build error
| import os | |
| import json | |
| import re | |
| import gradio as gr | |
| import pandas as pd | |
| import requests | |
| import random | |
| import urllib.parse | |
| from tempfile import NamedTemporaryFile | |
| from typing import List | |
| from bs4 import BeautifulSoup | |
| from langchain_core.prompts import ChatPromptTemplate | |
| from langchain_community.vectorstores import FAISS | |
| from langchain_community.document_loaders import PyPDFLoader | |
| from langchain_core.output_parsers import StrOutputParser | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from langchain_text_splitters import RecursiveCharacterTextSplitter | |
| from langchain_community.llms import HuggingFaceHub | |
| from langchain_core.runnables import RunnableParallel, RunnablePassthrough | |
| from langchain_core.documents import Document | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| from datetime import datetime | |
| from huggingface_hub.utils import HfHubHTTPError | |
| huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") | |
| # Memory database to store question-answer pairs | |
| memory_database = {} | |
| conversation_history = [] | |
| def load_and_split_document_basic(file): | |
| """Loads and splits the document into pages.""" | |
| loader = PyPDFLoader(file.name) | |
| data = loader.load_and_split() | |
| return data | |
| def load_and_split_document_recursive(file: NamedTemporaryFile) -> List[Document]: | |
| """Loads and splits the document into chunks.""" | |
| loader = PyPDFLoader(file.name) | |
| pages = loader.load() | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size=1000, | |
| chunk_overlap=200, | |
| length_function=len, | |
| ) | |
| chunks = text_splitter.split_documents(pages) | |
| return chunks | |
| def get_embeddings(): | |
| return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
| def create_or_update_database(data, embeddings): | |
| if os.path.exists("faiss_database"): | |
| db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True) | |
| db.add_documents(data) | |
| else: | |
| db = FAISS.from_documents(data, embeddings) | |
| db.save_local("faiss_database") | |
| def clear_cache(): | |
| if os.path.exists("faiss_database"): | |
| os.remove("faiss_database") | |
| return "Cache cleared successfully." | |
| else: | |
| return "No cache to clear." | |
| def get_similarity(text1, text2): | |
| vectorizer = TfidfVectorizer().fit_transform([text1, text2]) | |
| return cosine_similarity(vectorizer[0:1], vectorizer[1:2])[0][0] | |
| prompt = """ | |
| Answer the question based on the following information: | |
| Conversation History: | |
| {history} | |
| Context from documents: | |
| {context} | |
| Current Question: {question} | |
| If the question is referring to the conversation history, use that information to answer. | |
| If the question is not related to the conversation history, use the context from documents to answer. | |
| If you don't have enough information to answer, say so. | |
| Provide a concise and direct answer to the question: | |
| """ | |
| def get_model(temperature, top_p, repetition_penalty): | |
| return HuggingFaceHub( | |
| repo_id="mistralai/Mistral-7B-Instruct-v0.3", | |
| model_kwargs={ | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "repetition_penalty": repetition_penalty, | |
| "max_length": 1000 | |
| }, | |
| huggingfacehub_api_token=huggingface_token | |
| ) | |
| def generate_chunked_response(model, prompt, max_tokens=200): | |
| full_response = "" | |
| total_length = len(prompt.split()) # Approximate token count of prompt | |
| while total_length < 7800: # Leave some margin | |
| try: | |
| chunk = model(prompt + full_response, max_new_tokens=min(200, 7800 - total_length)) | |
| chunk = chunk.strip() | |
| if not chunk: | |
| break | |
| full_response += chunk | |
| total_length += len(chunk.split()) # Approximate token count | |
| if chunk.endswith((".", "!", "?")): | |
| break | |
| except Exception as e: | |
| print(f"Error generating response: {str(e)}") | |
| break | |
| return full_response.strip() | |
| def manage_conversation_history(question, answer, history, max_history=5): | |
| history.append({"question": question, "answer": answer}) | |
| if len(history) > max_history: | |
| history.pop(0) | |
| return history | |
| def is_related_to_history(question, history, threshold=0.3): | |
| if not history: | |
| return False | |
| history_text = " ".join([f"{h['question']} {h['answer']}" for h in history]) | |
| similarity = get_similarity(question, history_text) | |
| return similarity > threshold | |
| def extract_text_from_webpage(html): | |
| soup = BeautifulSoup(html, 'html.parser') | |
| for script in soup(["script", "style"]): | |
| script.extract() # Remove scripts and styles | |
| text = soup.get_text() | |
| lines = (line.strip() for line in text.splitlines()) | |
| chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) | |
| text = '\n'.join(chunk for chunk in chunks if chunk) | |
| return text | |
| _useragent_list = [ | |
| "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", | |
| "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", | |
| "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", | |
| "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", | |
| "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", | |
| "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", | |
| ] | |
| def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None): | |
| escaped_term = urllib.parse.quote_plus(term) | |
| start = 0 | |
| all_results = [] | |
| max_chars_per_page = 8000 # Limit the number of characters from each webpage to stay under the token limit | |
| print(f"Starting Google search for term: '{term}'") | |
| with requests.Session() as session: | |
| while start < num_results: | |
| try: | |
| user_agent = random.choice(_useragent_list) | |
| headers = { | |
| 'User-Agent': user_agent | |
| } | |
| resp = session.get( | |
| url="https://www.google.com/search", | |
| headers=headers, | |
| params={ | |
| "q": term, | |
| "num": num_results - start, | |
| "hl": lang, | |
| "start": start, | |
| "safe": safe, | |
| }, | |
| timeout=timeout, | |
| verify=ssl_verify, | |
| ) | |
| resp.raise_for_status() | |
| print(f"Successfully retrieved search results page (start={start})") | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error retrieving search results: {e}") | |
| break | |
| soup = BeautifulSoup(resp.text, "html.parser") | |
| result_block = soup.find_all("div", attrs={"class": "g"}) | |
| if not result_block: | |
| print("No results found on this page") | |
| break | |
| print(f"Found {len(result_block)} results on this page") | |
| for result in result_block: | |
| link = result.find("a", href=True) | |
| title = result.find("h3") | |
| if link and title: | |
| link = link["href"] | |
| title = title.get_text() | |
| print(f"Processing link: {link}") | |
| try: | |
| webpage = session.get(link, headers=headers, timeout=timeout) | |
| webpage.raise_for_status() | |
| visible_text = extract_text_from_webpage(webpage.text) | |
| if len(visible_text) > max_chars_per_page: | |
| visible_text = visible_text[:max_chars_per_page] + "..." | |
| all_results.append({"link": link, "title": title, "text": visible_text}) | |
| print(f"Successfully extracted text from {link}") | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error retrieving webpage content: {e}") | |
| all_results.append({"link": link, "title": title, "text": None}) | |
| else: | |
| print("No link or title found for this result") | |
| all_results.append({"link": None, "title": None, "text": None}) | |
| start += len(result_block) | |
| print(f"Search completed. Total results: {len(all_results)}") | |
| print("Search results:") | |
| for i, result in enumerate(all_results, 1): | |
| print(f"Result {i}:") | |
| print(f" Title: {result['title']}") | |
| print(f" Link: {result['link']}") | |
| if result['text']: | |
| print(f" Text: {result['text'][:100]}...") # Print first 100 characters | |
| else: | |
| print(" Text: None") | |
| print("End of search results") | |
| if not all_results: | |
| print("No search results found. Returning a default message.") | |
| return [{"link": None, "title": "No Results", "text": "No information found in the web search results."}] | |
| return all_results | |
| def summarize_content(content, model): | |
| if content is None: | |
| return "No content available to summarize." | |
| summary_prompt = f""" | |
| Summarize the following news article in 10-15 lines. Focus on the key points, main events, and significant details. Ensure the summary is informative and relevant to current news: | |
| {content[:3000]} # Limit input to avoid token limits | |
| Summary: | |
| """ | |
| summary = generate_chunked_response(model, summary_prompt, max_tokens=300) # Adjust max_tokens as needed | |
| return summary | |
| def rank_search_results(titles, summaries, model): | |
| if not titles or not summaries: | |
| print("No titles or summaries to rank.") | |
| return list(range(1, len(titles) + 1)) | |
| ranking_prompt = ( | |
| "Rank the following search results from a financial analyst perspective. " | |
| f"Assign a rank from 1 to {len(titles)} based on relevance, with 1 being the most relevant. " | |
| "Return only the numeric ranks in order, separated by commas.\n\n" | |
| "Titles and summaries:\n" | |
| ) | |
| for i, (title, summary) in enumerate(zip(titles, summaries), 1): | |
| ranking_prompt += f"{i}. Title: {title}\nSummary: {summary}\n\n" | |
| ranking_prompt += "Ranks:" | |
| try: | |
| ranks_str = generate_chunked_response(model, ranking_prompt) | |
| print(f"Model output for ranking: {ranks_str}") | |
| if not ranks_str.strip(): | |
| print("Model returned an empty string for ranking.") | |
| return list(range(1, len(titles) + 1)) | |
| ranks = [float(rank.strip()) for rank in ranks_str.split(',') if rank.strip()] | |
| if len(ranks) != len(titles): | |
| print(f"Warning: Number of ranks ({len(ranks)}) does not match number of titles ({len(titles)})") | |
| return list(range(1, len(titles) + 1)) | |
| return ranks | |
| except Exception as e: | |
| print(f"Error in ranking: {str(e)}. Using fallback ranking method.") | |
| return list(range(1, len(titles) + 1)) | |
| def ask_question(question, temperature, top_p, repetition_penalty, web_search): | |
| global conversation_history | |
| if not question: | |
| return "Please enter a question." | |
| model = get_model(temperature, top_p, repetition_penalty) | |
| embed = get_embeddings() | |
| if web_search: | |
| search_results = google_search(question) | |
| processed_results = [] | |
| for index, result in enumerate(search_results, start=1): | |
| if result["text"] is not None: | |
| try: | |
| summary = summarize_content(result["text"], model) | |
| processed_results.append({ | |
| "title": result.get("title", f"Result {index}"), | |
| "summary": summary, | |
| "index": index | |
| }) | |
| except Exception as e: | |
| print(f"Error processing search result {index}: {str(e)}") | |
| else: | |
| print(f"Skipping result {index} due to None content") | |
| if not processed_results: | |
| return "No valid search results found." | |
| print(f"Number of processed results: {len(processed_results)}") | |
| # For news requests, return the summaries directly | |
| if "news" in question.lower(): | |
| news_response = "Here are the latest news summaries on this topic:\n\n" | |
| for result in processed_results[:5]: # Limit to top 5 results | |
| news_response += f"Title: {result['title']}\n\nSummary: {result['summary']}\n\n---\n\n" | |
| return news_response.strip() | |
| # For other questions, use the summaries as context | |
| context_str = "\n\n".join([f"Title: {r['title']}\nSummary: {r['summary']}" | |
| for r in processed_results]) | |
| prompt_template = """ | |
| Answer the question based on the following web search results: | |
| Web Search Results: | |
| {context} | |
| Current Question: {question} | |
| If the web search results don't contain relevant information, state that the information is not available in the search results. | |
| Provide a concise and direct answer to the question: | |
| """ | |
| prompt_val = ChatPromptTemplate.from_template(prompt_template) | |
| formatted_prompt = prompt_val.format(context=context_str, question=question) | |
| answer = generate_chunked_response(model, formatted_prompt) | |
| else: | |
| if database is None: | |
| return "No documents available. Please upload documents or enable web search to answer questions." | |
| history_str = "\n".join([f"Q: {item['question']}\nA: {item['answer']}" for item in conversation_history]) | |
| if is_related_to_history(question, conversation_history): | |
| context_str = "No additional context needed. Please refer to the conversation history." | |
| else: | |
| retriever = database.as_retriever() | |
| relevant_docs = retriever.get_relevant_documents(question) | |
| context_str = "\n".join([doc.page_content for doc in relevant_docs]) | |
| prompt_val = ChatPromptTemplate.from_template(prompt) | |
| formatted_prompt = prompt_val.format(history=history_str, context=context_str, question=question) | |
| answer = generate_chunked_response(model, formatted_prompt) | |
| if not web_search: | |
| memory_database[question] = answer | |
| conversation_history = manage_conversation_history(question, answer, conversation_history) | |
| return answer | |
| def update_vectors(files, use_recursive_splitter): | |
| if not files: | |
| return "Please upload at least one PDF file." | |
| embed = get_embeddings() | |
| total_chunks = 0 | |
| all_data = [] | |
| for file in files: | |
| if use_recursive_splitter: | |
| data = load_and_split_document_recursive(file) | |
| else: | |
| data = load_and_split_document_basic(file) | |
| all_data.extend(data) | |
| total_chunks += len(data) | |
| if os.path.exists("faiss_database"): | |
| database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
| database.add_documents(all_data) | |
| else: | |
| database = FAISS.from_documents(all_data, embed) | |
| database.save_local("faiss_database") | |
| return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files." | |
| def update_vector_db_with_search_results(search_results, ranks, current_date): | |
| embed = get_embeddings() | |
| documents = [] | |
| for result, rank in zip(search_results, ranks): | |
| if result.get("summary"): | |
| doc = Document( | |
| page_content=result["summary"], | |
| metadata={ | |
| "search_date": current_date, | |
| "search_title": result.get("title", ""), | |
| "search_content": result.get("content", ""), | |
| "search_summary": result["summary"], | |
| "rank": rank | |
| } | |
| ) | |
| documents.append(doc) | |
| if not documents: | |
| print("No valid documents to add to the database.") | |
| return | |
| texts = [doc.page_content for doc in documents] | |
| metadatas = [doc.metadata for doc in documents] | |
| print(f"Number of documents to embed: {len(texts)}") | |
| print(f"First document text: {texts[0][:100]}...") # Print first 100 characters of the first document | |
| try: | |
| if os.path.exists("faiss_database"): | |
| database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
| database.add_texts(texts, metadatas=metadatas) | |
| else: | |
| database = FAISS.from_texts(texts, embed, metadatas=metadatas) | |
| database.save_local("faiss_database") | |
| print("Database updated successfully.") | |
| except Exception as e: | |
| print(f"Error updating database: {str(e)}") | |
| def export_vector_db_to_excel(): | |
| embed = get_embeddings() | |
| database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
| documents = database.docstore._dict.values() | |
| data = [{ | |
| "Search Date": doc.metadata["search_date"], | |
| "Search Title": doc.metadata["search_title"], | |
| "Search Content": doc.metadata["search_content"], | |
| "Search Summary": doc.metadata["search_summary"], | |
| "Rank": doc.metadata["rank"] | |
| } for doc in documents] | |
| df = pd.DataFrame(data) | |
| with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp: | |
| excel_path = tmp.name | |
| df.to_excel(excel_path, index=False) | |
| return excel_path | |
| def extract_db_to_excel(): | |
| embed = get_embeddings() | |
| database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
| documents = database.docstore._dict.values() | |
| data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents] | |
| df = pd.DataFrame(data) | |
| with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp: | |
| excel_path = tmp.name | |
| df.to_excel(excel_path, index=False) | |
| return excel_path | |
| def export_memory_db_to_excel(): | |
| data = [{"question": question, "answer": answer} for question, answer in memory_database.items()] | |
| df_memory = pd.DataFrame(data) | |
| data_history = [{"question": item["question"], "answer": item["answer"]} for item in conversation_history] | |
| df_history = pd.DataFrame(data_history) | |
| with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp: | |
| excel_path = tmp.name | |
| with pd.ExcelWriter(excel_path, engine='openpyxl') as writer: | |
| df_memory.to_excel(writer, sheet_name='Memory Database', index=False) | |
| df_history.to_excel(writer, sheet_name='Conversation History', index=False) | |
| return excel_path | |
| # Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Chat with your PDF documents") | |
| with gr.Row(): | |
| file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"]) | |
| update_button = gr.Button("Update Vector Store") | |
| use_recursive_splitter = gr.Checkbox(label="Use Recursive Text Splitter", value=False) | |
| update_output = gr.Textbox(label="Update Status") | |
| update_button.click(update_vectors, inputs=[file_input, use_recursive_splitter], outputs=update_output) | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| chatbot = gr.Chatbot(label="Conversation") | |
| question_input = gr.Textbox(label="Ask a question about your documents") | |
| submit_button = gr.Button("Submit") | |
| with gr.Column(scale=1): | |
| temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1) | |
| top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1) | |
| repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1) | |
| web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False) | |
| def chat(question, history, temperature, top_p, repetition_penalty, web_search): | |
| answer = ask_question(question, temperature, top_p, repetition_penalty, web_search) | |
| if "news" in question.lower(): | |
| # Split the answer into individual news items | |
| news_items = answer.split("---") | |
| for item in news_items: | |
| if item.strip(): | |
| history.append((question, item.strip())) | |
| else: | |
| history.append((question, answer)) | |
| return "", history | |
| submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox], outputs=[question_input, chatbot]) | |
| export_vector_db_button = gr.Button("Export Vector DB to Excel") | |
| vector_db_excel_output = gr.File(label="Download Vector DB Excel File") | |
| export_vector_db_button.click(export_vector_db_to_excel, inputs=[], outputs=vector_db_excel_output) | |
| extract_button = gr.Button("Extract Database to Excel") | |
| excel_output = gr.File(label="Download Excel File") | |
| extract_button.click(extract_db_to_excel, inputs=[], outputs=excel_output) | |
| export_memory_button = gr.Button("Export Memory Database to Excel") | |
| memory_excel_output = gr.File(label="Download Memory Excel File") | |
| export_memory_button.click(export_memory_db_to_excel, inputs=[], outputs=memory_excel_output) | |
| clear_button = gr.Button("Clear Cache") | |
| clear_output = gr.Textbox(label="Cache Status") | |
| clear_button.click(clear_cache, inputs=[], outputs=clear_output) | |
| if __name__ == "__main__": | |
| demo.launch() |