File size: 11,929 Bytes
63d903a
 
 
0b607fb
be913ab
63d903a
2594602
 
63d903a
 
 
 
 
495c1d2
b4dffd4
 
2594602
781b94b
28ed44f
63d903a
 
b4dffd4
 
 
 
 
 
63d903a
 
 
 
 
 
 
 
 
b4dffd4
63d903a
 
 
 
 
 
 
495c1d2
63d903a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4dffd4
 
 
63d903a
b4dffd4
 
 
 
 
 
63d903a
b4dffd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
711bfec
 
 
 
 
 
b4dffd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2594602
be913ab
 
a2c0e0e
be913ab
0b607fb
a2c0e0e
 
 
 
 
b4dffd4
 
 
781b94b
b4dffd4
781b94b
b4dffd4
 
 
 
 
 
 
 
 
 
 
63d903a
b4dffd4
 
 
 
 
 
 
 
63d903a
b4dffd4
 
 
 
 
 
 
63d903a
b4dffd4
d1372f5
 
 
 
b4dffd4
d1372f5
 
b4dffd4
d1372f5
b4dffd4
d1372f5
b4dffd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1372f5
b4dffd4
 
 
 
 
 
 
 
 
 
 
 
d1372f5
b4dffd4
 
 
63d903a
b4dffd4
 
 
 
 
a6c785f
b4dffd4
 
781b94b
b4dffd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63d903a
b4dffd4
 
 
 
 
 
 
 
 
 
 
 
 
 
63d903a
 
b4dffd4
63d903a
 
 
 
 
b4dffd4
63d903a
 
 
 
 
b4dffd4
63d903a
b4dffd4
 
63d903a
 
0b607fb
2594602
63d903a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import os
import json
import re
import gradio as gr
import requests
from duckduckgo_search import DDGS
from typing import List
from pydantic import BaseModel, Field
from tempfile import NamedTemporaryFile
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from llama_parse import LlamaParse
from langchain_core.documents import Document
from huggingface_hub import InferenceClient
import inspect

# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")

MODELS = [
    "mistralai/Mistral-7B-Instruct-v0.3",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "microsoft/Phi-3-mini-4k-instruct"
]

# Initialize LlamaParse
llama_parser = LlamaParse(
    api_key=llama_cloud_api_key,
    result_type="markdown",
    num_workers=4,
    verbose=True,
    language="en",
)

def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
    """Loads and splits the document into pages."""
    if parser == "pypdf":
        loader = PyPDFLoader(file.name)
        return loader.load_and_split()
    elif parser == "llamaparse":
        try:
            documents = llama_parser.load_data(file.name)
            return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
        except Exception as e:
            print(f"Error using Llama Parse: {str(e)}")
            print("Falling back to PyPDF parser")
            loader = PyPDFLoader(file.name)
            return loader.load_and_split()
    else:
        raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")

def get_embeddings():
    return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")

def update_vectors(files, parser):
    if not files:
        return "Please upload at least one PDF file."
    
    embed = get_embeddings()
    total_chunks = 0
    
    all_data = []
    for file in files:
        data = load_document(file, parser)
        all_data.extend(data)
        total_chunks += len(data)
    
    if os.path.exists("faiss_database"):
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
        database.add_documents(all_data)
    else:
        database = FAISS.from_documents(all_data, embed)
    
    database.save_local("faiss_database")
    
    return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."

def generate_chunked_response(prompt, model, max_tokens=1000, num_calls=3, temperature=0.2, should_stop=False):
    print(f"Starting generate_chunked_response with {num_calls} calls")
    client = InferenceClient(model, token=huggingface_token)
    full_response = ""
    messages = [{"role": "user", "content": prompt}]
    
    for i in range(num_calls):
        print(f"Starting API call {i+1}")
        if should_stop:
            print("Stop clicked, breaking loop")
            break
        try:
            for message in client.chat_completion(
                messages=messages,
                max_tokens=max_tokens,
                temperature=temperature,
                stream=True,
            ):
                if should_stop:
                    print("Stop clicked during streaming, breaking")
                    break
                if message.choices and message.choices[0].delta and message.choices[0].delta.content:
                    chunk = message.choices[0].delta.content
                    full_response += chunk
            print(f"API call {i+1} completed")
        except Exception as e:
            print(f"Error in generating response: {str(e)}")
    
    # Clean up the response
    clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
    clean_response = clean_response.replace("Using the following context:", "").strip()
    clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
    
    # Remove duplicate paragraphs and sentences
    paragraphs = clean_response.split('\n\n')
    unique_paragraphs = []
    for paragraph in paragraphs:
        if paragraph not in unique_paragraphs:
            sentences = paragraph.split('. ')
            unique_sentences = []
            for sentence in sentences:
                if sentence not in unique_sentences:
                    unique_sentences.append(sentence)
            unique_paragraphs.append('. '.join(unique_sentences))
    
    final_response = '\n\n'.join(unique_paragraphs)
    
    print(f"Final clean response: {final_response[:100]}...")
    return final_response

def duckduckgo_search(query):
    with DDGS() as ddgs:
        results = ddgs.text(query, max_results=5)
    return results

class CitingSources(BaseModel):
    sources: List[str] = Field(
        ...,
        description="List of sources to cite. Should be an URL of the source."
    )
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls):
    if not message.strip():
        return "", history

    history = history + [(message, "")]

    try:
        if use_web_search:
            for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
                history[-1] = (message, f"{main_content}\n\n{sources}")
                yield history
        else:
            for partial_response in get_response_from_pdf(message, model, num_calls=num_calls, temperature=temperature):
                history[-1] = (message, partial_response)
                yield history
    except gr.CancelledError:
        yield history

def retry_last_response(history, use_web_search, model, temperature, num_calls):
    if not history:
        return history
    
    last_user_msg = history[-1][0]
    history = history[:-1]  # Remove the last response
    
    return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)

def respond(message, history, model, temperature, num_calls, use_web_search):
    if use_web_search:
        for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
            yield f"{main_content}\n\n{sources}"
    else:
        for partial_response in get_response_from_pdf(message, model, num_calls=num_calls, temperature=temperature):
            yield partial_response

def get_response_with_search(query, model, num_calls=3, temperature=0.2):
    search_results = duckduckgo_search(query)
    context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n" 
                        for result in search_results if 'body' in result)
    
    prompt = f"""Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""
    
    client = InferenceClient(model, token=huggingface_token)
    
    main_content = ""
    for i in range(num_calls):
        for message in client.chat_completion(
            messages=[{"role": "user", "content": prompt}],
            max_tokens=1000,
            temperature=temperature,
            stream=True,
        ):
            if message.choices and message.choices[0].delta and message.choices[0].delta.content:
                chunk = message.choices[0].delta.content
                main_content += chunk
                yield main_content, ""  # Yield partial main content without sources

def get_response_from_pdf(query, model, num_calls=3, temperature=0.2):
    embed = get_embeddings()
    if os.path.exists("faiss_database"):
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
    else:
        yield "No documents available. Please upload PDF documents to answer questions."
        return

    retriever = database.as_retriever()
    relevant_docs = retriever.get_relevant_documents(query)
    context_str = "\n".join([doc.page_content for doc in relevant_docs])

    prompt = f"""Using the following context from the PDF documents:
{context_str}
Write a detailed and complete response that answers the following user question: '{query}'"""

    client = InferenceClient(model, token=huggingface_token)
    
    response = ""
    for i in range(num_calls):
        for message in client.chat_completion(
            messages=[{"role": "user", "content": prompt}],
            max_tokens=1000,
            temperature=temperature,
            stream=True,
        ):
            if message.choices and message.choices[0].delta and message.choices[0].delta.content:
                chunk = message.choices[0].delta.content
                response += chunk
                yield response  # Yield partial response

def vote(data: gr.LikeData):
    if data.liked:
        print(f"You upvoted this response: {data.value}")
    else:
        print(f"You downvoted this response: {data.value}")

css = """
/* Add your custom CSS here */
"""

# Define the checkbox outside the demo block
use_web_search = gr.Checkbox(label="Use Web Search", value=False)

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0]),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
        gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
        use_web_search  # Add this line to include the checkbox
    ],
    title="AI-powered Web Search and PDF Chat Assistant",
    description="Chat with your PDFs or use web search to answer questions.",
    theme=gr.themes.Soft(
        primary_hue="orange",
        secondary_hue="amber",
        neutral_hue="gray",
        font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]
    ).set(
        body_background_fill_dark="#0c0505",
        block_background_fill_dark="#0c0505",
        block_border_width="1px",
        block_title_background_fill_dark="#1b0f0f",
        input_background_fill_dark="#140b0b",
        button_secondary_background_fill_dark="#140b0b",
        border_color_accent_dark="#1b0f0f",
        border_color_primary_dark="#1b0f0f",
        background_fill_secondary_dark="#0c0505",
        color_accent_soft_dark="transparent",
        code_background_fill_dark="#140b0b"
    ),
    
    css=css,
    examples=[
        ["Tell me about the contents of the uploaded PDFs."],
        ["What are the main topics discussed in the documents?"],
        ["Can you summarize the key points from the PDFs?"]
    ],
    cache_examples=False,
    analytics_enabled=False,
)

# Add file upload functionality
with demo:
    gr.Markdown("## Upload PDF Documents")

    with gr.Row():
        file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
        parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
        update_button = gr.Button("Upload Document")
    
    update_output = gr.Textbox(label="Update Status")
    update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output)

    
    gr.Markdown(
    """
    ## How to use
    1. Upload PDF documents using the file input at the top.
    2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
    3. Ask questions in the chat interface. 
    4. Toggle "Use Web Search" to switch between PDF chat and web search.
    5. Adjust Temperature and Number of API Calls to fine-tune the response generation.
    6. Use the provided examples or ask your own questions.
    """
    )

if __name__ == "__main__":
    demo.launch(share=True)