Spaces:
Sleeping
Sleeping
File size: 3,581 Bytes
0b607fb a2c0e0e be913ab a2c0e0e 2594602 a2c0e0e 2594602 781b94b 28ed44f 2594602 a2c0e0e be913ab a2c0e0e be913ab 0b607fb a2c0e0e 781b94b a2c0e0e 790409e a2c0e0e 790409e be913ab a2c0e0e 781b94b a2c0e0e 781b94b a2c0e0e 0b607fb 2594602 a2c0e0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import gradio as gr
from huggingface_hub import InferenceApi
from duckduckgo_search import DDGS
import requests
import json
from typing import List
from pydantic import BaseModel, Field
import os
# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
# Function to perform a DuckDuckGo search
def duckduckgo_search(query):
with DDGS() as ddgs:
results = ddgs.text(query, max_results=5)
return results
class CitingSources(BaseModel):
sources: List[str] = Field(
...,
description="List of sources to cite. Should be an URL of the source."
)
def get_response_with_search(query):
# Perform the web search
search_results = duckduckgo_search(query)
# Use the search results as context for the model
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
for result in search_results if 'body' in result)
# Prompt formatted for Mistral-7B-Instruct
prompt = f"""<s>[INST] Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response. [/INST]"""
# API endpoint for Mistral-7B-Instruct-v0.3
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
# Headers
headers = {"Authorization": f"Bearer {huggingface_token}"}
# Payload
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": 1000,
"temperature": 0.7,
"top_p": 0.95,
"top_k": 40,
"repetition_penalty": 1.1
}
}
# Make the API call
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
if isinstance(result, list) and len(result) > 0:
generated_text = result[0].get('generated_text', 'No text generated')
# Remove the instruction part
content_start = generated_text.find("[/INST]")
if content_start != -1:
generated_text = generated_text[content_start + 7:].strip()
# Split the response into main content and sources
parts = generated_text.split("Sources:", 1)
main_content = parts[0].strip()
sources = parts[1].strip() if len(parts) > 1 else ""
return main_content, sources
else:
return f"Unexpected response format: {result}", ""
else:
return f"Error: API returned status code {response.status_code}", ""
def chatbot_interface(message, history):
main_content, sources = get_response_with_search(message)
formatted_response = f"{main_content}\n\nSources:\n{sources}"
return formatted_response
# Gradio chatbot interface
iface = gr.ChatInterface(
fn=chatbot_interface,
title="AI-powered Web Search Assistant",
description="Ask questions, and I'll search the web and provide answers using the Mistral-7B-Instruct model.",
examples=[
["What are the latest developments in AI?"],
["Tell me about recent updates on GitHub"],
["What are the best hotels in Galapagos, Ecuador?"],
["Summarize recent advancements in Python programming"],
],
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
)
if __name__ == "__main__":
iface.launch(share=True)
|