File size: 6,863 Bytes
781b94b
 
 
0b607fb
be913ab
781b94b
 
 
 
2594602
 
781b94b
 
 
 
 
 
 
 
 
2594602
781b94b
28ed44f
781b94b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2594602
be913ab
 
 
 
0b607fb
781b94b
 
 
 
 
 
 
 
 
 
 
 
 
0b607fb
be913ab
 
 
 
781b94b
 
be913ab
781b94b
be913ab
781b94b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be913ab
781b94b
 
 
 
be913ab
781b94b
 
be913ab
781b94b
 
 
 
 
 
 
 
 
 
2594602
781b94b
 
 
 
0b607fb
781b94b
 
 
 
 
0b607fb
2594602
781b94b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import json
import re
import gradio as gr
import requests
import random
import urllib.parse
from tempfile import NamedTemporaryFile
from bs4 import BeautifulSoup
from typing import List
from pydantic import BaseModel, Field
from huggingface_hub import InferenceApi
from duckduckgo_search import DDGS
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceHub
from langchain_core.documents import Document
from sentence_transformers import SentenceTransformer
from llama_parse import LlamaParse

# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")

# Initialize SentenceTransformer and LlamaParse
sentence_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
llama_parser = LlamaParse(
    api_key=llama_cloud_api_key,
    result_type="markdown",
    num_workers=4,
    verbose=True,
    language="en",
)

def load_document(file: NamedTemporaryFile, parser: str = "pypdf") -> List[Document]:
    if parser == "pypdf":
        loader = PyPDFLoader(file.name)
        return loader.load_and_split()
    elif parser == "llamaparse":
        try:
            documents = llama_parser.load_data(file.name)
            return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
        except Exception as e:
            print(f"Error using Llama Parse: {str(e)}")
            print("Falling back to PyPDF parser")
            loader = PyPDFLoader(file.name)
            return loader.load_and_split()
    else:
        raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")

def update_vectors(files, parser):
    if not files:
        return "Please upload at least one PDF file."
    
    embed = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
    total_chunks = 0
    
    all_data = []
    for file in files:
        data = load_document(file, parser)
        all_data.extend(data)
        total_chunks += len(data)
    
    if os.path.exists("faiss_database"):
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
        database.add_documents(all_data)
    else:
        database = FAISS.from_documents(all_data, embed)
    
    database.save_local("faiss_database")
    
    return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."

def clear_cache():
    if os.path.exists("faiss_database"):
        os.remove("faiss_database")
        return "Cache cleared successfully."
    else:
        return "No cache to clear."

def get_model(temperature, top_p, repetition_penalty):
    return HuggingFaceHub(
        repo_id="mistralai/Mistral-7B-Instruct-v0.3",
        model_kwargs={
            "temperature": temperature,
            "top_p": top_p,
            "repetition_penalty": repetition_penalty,
            "max_length": 1000
        },
        huggingfacehub_api_token=huggingface_token
    )

def duckduckgo_search(query):
    with DDGS() as ddgs:
        results = ddgs.text(query, max_results=5)
    return results

def get_response_with_search(query, temperature, top_p, repetition_penalty, use_pdf=False):
    model = get_model(temperature, top_p, repetition_penalty)
    embed = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")

    if use_pdf and os.path.exists("faiss_database"):
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
        retriever = database.as_retriever()
        relevant_docs = retriever.get_relevant_documents(query)
        context = "\n".join([f"Content: {doc.page_content}\nSource: {doc.metadata['source']}\n" for doc in relevant_docs])
    else:
        search_results = duckduckgo_search(query)
        context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n" 
                            for result in search_results if 'body' in result)

    prompt = f"""<s>[INST] Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response. [/INST]"""

    response = model(prompt)
    
    main_content, sources = split_response(response)
    
    return main_content, sources

def split_response(response):
    parts = response.split("Sources:", 1)
    main_content = parts[0].strip()
    sources = parts[1].strip() if len(parts) > 1 else ""
    return main_content, sources

def chatbot_interface(message, history, temperature, top_p, repetition_penalty, use_pdf):
    main_content, sources = get_response_with_search(message, temperature, top_p, repetition_penalty, use_pdf)
    formatted_response = f"{main_content}\n\nSources:\n{sources}"
    return formatted_response

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# AI-powered Web Search and PDF Chat Assistant")
    
    with gr.Row():
        file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
        parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="pypdf")
        update_button = gr.Button("Upload PDF")
    
    update_output = gr.Textbox(label="Update Status")
    update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output)
    
    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(label="Conversation")
            msg = gr.Textbox(label="Ask a question")
            submit_button = gr.Button("Submit")
        with gr.Column(scale=1):
            temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.7, step=0.1)
            top_p = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.95, step=0.05)
            repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.1, step=0.1)
            use_pdf = gr.Checkbox(label="Use PDF Documents", value=False)

    def respond(message, chat_history, temperature, top_p, repetition_penalty, use_pdf):
        bot_message = chatbot_interface(message, chat_history, temperature, top_p, repetition_penalty, use_pdf)
        chat_history.append((message, bot_message))
        return "", chat_history

    submit_button.click(respond, inputs=[msg, chatbot, temperature, top_p, repetition_penalty, use_pdf], outputs=[msg, chatbot])
    
    clear_button = gr.Button("Clear Cache")
    clear_output = gr.Textbox(label="Cache Status")
    clear_button.click(clear_cache, inputs=[], outputs=clear_output)

if __name__ == "__main__":
    demo.launch()