Spaces:
Sleeping
Sleeping
File size: 6,863 Bytes
781b94b 0b607fb be913ab 781b94b 2594602 781b94b 2594602 781b94b 28ed44f 781b94b 2594602 be913ab 0b607fb 781b94b 0b607fb be913ab 781b94b be913ab 781b94b be913ab 781b94b be913ab 781b94b be913ab 781b94b be913ab 781b94b 2594602 781b94b 0b607fb 781b94b 0b607fb 2594602 781b94b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import os
import json
import re
import gradio as gr
import requests
import random
import urllib.parse
from tempfile import NamedTemporaryFile
from bs4 import BeautifulSoup
from typing import List
from pydantic import BaseModel, Field
from huggingface_hub import InferenceApi
from duckduckgo_search import DDGS
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceHub
from langchain_core.documents import Document
from sentence_transformers import SentenceTransformer
from llama_parse import LlamaParse
# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
# Initialize SentenceTransformer and LlamaParse
sentence_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
llama_parser = LlamaParse(
api_key=llama_cloud_api_key,
result_type="markdown",
num_workers=4,
verbose=True,
language="en",
)
def load_document(file: NamedTemporaryFile, parser: str = "pypdf") -> List[Document]:
if parser == "pypdf":
loader = PyPDFLoader(file.name)
return loader.load_and_split()
elif parser == "llamaparse":
try:
documents = llama_parser.load_data(file.name)
return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
except Exception as e:
print(f"Error using Llama Parse: {str(e)}")
print("Falling back to PyPDF parser")
loader = PyPDFLoader(file.name)
return loader.load_and_split()
else:
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
def update_vectors(files, parser):
if not files:
return "Please upload at least one PDF file."
embed = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
total_chunks = 0
all_data = []
for file in files:
data = load_document(file, parser)
all_data.extend(data)
total_chunks += len(data)
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
database.add_documents(all_data)
else:
database = FAISS.from_documents(all_data, embed)
database.save_local("faiss_database")
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."
def clear_cache():
if os.path.exists("faiss_database"):
os.remove("faiss_database")
return "Cache cleared successfully."
else:
return "No cache to clear."
def get_model(temperature, top_p, repetition_penalty):
return HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
model_kwargs={
"temperature": temperature,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"max_length": 1000
},
huggingfacehub_api_token=huggingface_token
)
def duckduckgo_search(query):
with DDGS() as ddgs:
results = ddgs.text(query, max_results=5)
return results
def get_response_with_search(query, temperature, top_p, repetition_penalty, use_pdf=False):
model = get_model(temperature, top_p, repetition_penalty)
embed = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
if use_pdf and os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
retriever = database.as_retriever()
relevant_docs = retriever.get_relevant_documents(query)
context = "\n".join([f"Content: {doc.page_content}\nSource: {doc.metadata['source']}\n" for doc in relevant_docs])
else:
search_results = duckduckgo_search(query)
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
for result in search_results if 'body' in result)
prompt = f"""<s>[INST] Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response. [/INST]"""
response = model(prompt)
main_content, sources = split_response(response)
return main_content, sources
def split_response(response):
parts = response.split("Sources:", 1)
main_content = parts[0].strip()
sources = parts[1].strip() if len(parts) > 1 else ""
return main_content, sources
def chatbot_interface(message, history, temperature, top_p, repetition_penalty, use_pdf):
main_content, sources = get_response_with_search(message, temperature, top_p, repetition_penalty, use_pdf)
formatted_response = f"{main_content}\n\nSources:\n{sources}"
return formatted_response
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# AI-powered Web Search and PDF Chat Assistant")
with gr.Row():
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="pypdf")
update_button = gr.Button("Upload PDF")
update_output = gr.Textbox(label="Update Status")
update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="Conversation")
msg = gr.Textbox(label="Ask a question")
submit_button = gr.Button("Submit")
with gr.Column(scale=1):
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.7, step=0.1)
top_p = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.95, step=0.05)
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.1, step=0.1)
use_pdf = gr.Checkbox(label="Use PDF Documents", value=False)
def respond(message, chat_history, temperature, top_p, repetition_penalty, use_pdf):
bot_message = chatbot_interface(message, chat_history, temperature, top_p, repetition_penalty, use_pdf)
chat_history.append((message, bot_message))
return "", chat_history
submit_button.click(respond, inputs=[msg, chatbot, temperature, top_p, repetition_penalty, use_pdf], outputs=[msg, chatbot])
clear_button = gr.Button("Clear Cache")
clear_output = gr.Textbox(label="Cache Status")
clear_button.click(clear_cache, inputs=[], outputs=clear_output)
if __name__ == "__main__":
demo.launch() |