File size: 14,938 Bytes
5090140
b432dd9
 
5090140
 
 
 
b432dd9
5090140
 
e15b1c1
5090140
e15b1c1
5090140
4469e9d
e15b1c1
5090140
e15b1c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5090140
e15b1c1
 
 
 
 
 
5090140
e15b1c1
5090140
 
e15b1c1
 
 
 
 
 
 
 
 
 
 
5090140
 
e15b1c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5090140
 
e15b1c1
 
 
 
 
 
 
 
 
 
 
 
5090140
 
e15b1c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5090140
 
e15b1c1
 
 
 
 
 
 
5090140
 
e15b1c1
 
 
5090140
 
e15b1c1
 
 
 
 
 
 
 
 
 
 
 
 
 
09df7eb
 
bdf2a48
09df7eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e15b1c1
09df7eb
 
 
 
 
 
e15b1c1
09df7eb
 
e15b1c1
09df7eb
2316b3d
09df7eb
e15b1c1
09df7eb
e15b1c1
09df7eb
 
 
e15b1c1
09df7eb
 
 
 
 
 
 
 
e15b1c1
09df7eb
 
e15b1c1
09df7eb
e268d60
09df7eb
e15b1c1
09df7eb
 
e15b1c1
09df7eb
 
 
 
 
 
e15b1c1
09df7eb
 
 
 
e15b1c1
09df7eb
e15b1c1
09df7eb
 
 
 
 
 
 
 
 
 
 
 
 
e268d60
 
 
6228a67
09df7eb
 
 
 
 
 
e268d60
 
 
6228a67
09df7eb
 
 
 
6228a67
 
 
 
 
 
 
 
 
 
09df7eb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import fitz  # PyMuPDF
import gradio as gr
import requests
from bs4 import BeautifulSoup
import urllib.parse
import random
import os
from dotenv import load_dotenv
import shutil
import tempfile

load_dotenv()  # Load environment variables from .env file

# Now replace the hard-coded token with the environment variable
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN")

def clear_cache():
    try:
        # Clear Gradio cache
        cache_dir = tempfile.gettempdir()
        shutil.rmtree(os.path.join(cache_dir, "gradio"), ignore_errors=True)
        
        # Clear any custom cache you might have
        # For example, if you're caching PDF files or search results:
        if os.path.exists("output_summary.pdf"):
            os.remove("output_summary.pdf")
        
        # Add any other cache clearing operations here
        
        print("Cache cleared successfully.")
        return "Cache cleared successfully."
    except Exception as e:
        print(f"Error clearing cache: {e}")
        return f"Error clearing cache: {e}"

_useragent_list = [
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
]

# Function to extract visible text from HTML content of a webpage
def extract_text_from_webpage(html):
    print("Extracting text from webpage...")
    soup = BeautifulSoup(html, 'html.parser')
    for script in soup(["script", "style"]):
        script.extract()  # Remove scripts and styles
    text = soup.get_text()
    lines = (line.strip() for line in text.splitlines())
    chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
    text = '\n'.join(chunk for chunk in chunks if chunk)
    print(f"Extracted text length: {len(text)}")
    return text

# Function to perform a Google search and retrieve results
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None):
    """Performs a Google search and returns the results."""
    print(f"Searching for term: {term}")
    escaped_term = urllib.parse.quote_plus(term)
    start = 0
    all_results = []
    max_chars_per_page = 8000  # Limit the number of characters from each webpage to stay under the token limit

    with requests.Session() as session:
        while start < num_results:
            print(f"Fetching search results starting from: {start}")
            try:
                # Choose a random user agent
                user_agent = random.choice(_useragent_list)
                headers = {
                    'User-Agent': user_agent
                }
                print(f"Using User-Agent: {headers['User-Agent']}")

                resp = session.get(
                    url="https://www.google.com/search",
                    headers=headers,
                    params={
                        "q": term,
                        "num": num_results - start,
                        "hl": lang,
                        "start": start,
                        "safe": safe,
                    },
                    timeout=timeout,
                    verify=ssl_verify,
                )
                resp.raise_for_status()
            except requests.exceptions.RequestException as e:
                print(f"Error fetching search results: {e}")
                break

            soup = BeautifulSoup(resp.text, "html.parser")
            result_block = soup.find_all("div", attrs={"class": "g"})
            if not result_block:
                print("No more results found.")
                break
            for result in result_block:
                link = result.find("a", href=True)
                if link:
                    link = link["href"]
                    print(f"Found link: {link}")
                    try:
                        webpage = session.get(link, headers=headers, timeout=timeout)
                        webpage.raise_for_status()
                        visible_text = extract_text_from_webpage(webpage.text)
                        if len(visible_text) > max_chars_per_page:
                            visible_text = visible_text[:max_chars_per_page] + "..."
                        all_results.append({"link": link, "text": visible_text})
                    except requests.exceptions.RequestException as e:
                        print(f"Error fetching or processing {link}: {e}")
                        all_results.append({"link": link, "text": None})
                else:
                    print("No link found in result.")
                    all_results.append({"link": None, "text": None})
            start += len(result_block)
    print(f"Total results fetched: {len(all_results)}")
    return all_results

# Function to format the prompt for the Hugging Face API
def format_prompt(query, search_results, instructions):
    formatted_results = ""
    for result in search_results:
        link = result["link"]
        text = result["text"]
        if link:
            formatted_results += f"URL: {link}\nContent: {text}\n{'-' * 80}\n"
        else:
            formatted_results += "No link found.\n" + '-' * 80 + '\n'

    prompt = f"{instructions}User Query: {query}\n\nWeb Search Results:\n{formatted_results}\n\nAssistant:"
    return prompt

# Function to generate text using Hugging Face API
def generate_text(input_text, temperature=0.7, repetition_penalty=1.0, top_p=0.9):
    print("Generating text using Hugging Face API...")
    endpoint = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
    headers = {
        "Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}",  # Use the environment variable
        "Content-Type": "application/json"
    }
    data = {
        "inputs": input_text,
        "parameters": {
            "max_new_tokens": 8000,  # Adjust as needed
            "temperature": temperature,
            "repetition_penalty": repetition_penalty,
            "top_p": top_p
        }
    }

    try:
        response = requests.post(endpoint, headers=headers, json=data)
        response.raise_for_status()

        # Check if response is JSON
        try:
            json_data = response.json()
        except ValueError:
            print("Response is not JSON.")
            return None

        # Extract generated text from response JSON
        if isinstance(json_data, list):
            # Handle list response (if applicable for your use case)
            generated_text = json_data[0].get("generated_text") if json_data else None
        elif isinstance(json_data, dict):
            # Handle dictionary response
            generated_text = json_data.get("generated_text")
        else:
            print("Unexpected response format.")
            return None

        if generated_text is not None:
            print("Text generation complete using Hugging Face API.")
            print(f"Generated text: {generated_text}")  # Debugging line
            return generated_text
        else:
            print("Generated text not found in response.")
            return None

    except requests.exceptions.RequestException as e:
        print(f"Error generating text using Hugging Face API: {e}")
        return None

# Function to read and extract text from a PDF
def read_pdf(file_obj):
    with fitz.open(file_obj.name) as document:
        text = ""
        for page_num in range(document.page_count):
            page = document.load_page(page_num)
            text += page.get_text()
        return text

# Function to format the prompt with instructions for text generation
def format_prompt_with_instructions(text, instructions):
    prompt = f"{instructions}{text}\n\nAssistant:"
    return prompt

# Function to save text to a PDF
def save_text_to_pdf(text, output_path):
    print(f"Saving text to PDF at {output_path}...")
    doc = fitz.open()  # Create a new PDF document
    page = doc.new_page()  # Create a new page

    # Set the page margins
    margin = 50  # 50 points margin
    page_width = page.rect.width
    page_height = page.rect.height
    text_width = page_width - 2 * margin
    text_height = page_height - 2 * margin

    # Define font size and line spacing
    font_size = 9
    line_spacing = 1 * font_size
    fontname = "times-roman"  # Use a supported font name

    # Process the text into lines that fit within the text_width
    lines = []
    current_line = ""
    current_line_width = 0
    words = text.split(" ")
    for word in words:
        word_width = fitz.get_text_length(word, fontname, font_size)
        if current_line_width + word_width <= text_width:
            current_line += word + " "
            current_line_width += word_width + fitz.get_text_length(" ", fontname, font_size)
        else:
            lines.append(current_line.strip())
            current_line = word + " "
            current_line_width = word_width + fitz.get_text_length(" ", fontname, font_size)
    if current_line:
        lines.append(current_line.strip())

    # Add the lines to the page with margins
    x = margin
    y = margin
    for line in lines:
        if y + line_spacing > text_height:
            # Create a new page if text exceeds the page height
            page = doc.new_page()
            y = margin  # Reset y-coordinate for the new page
        page.insert_text((x, y), line, fontname=fontname, fontsize=font_size)
        y += line_spacing

    doc.save(output_path)  # Save the PDF to the specified output path
    print(f"Text saved to PDF at {output_path}")

# Function to process the PDF or search query and generate a summary
def process_input(query_or_file, is_pdf, instructions, temperature, top_p, repetition_penalty):
    load_dotenv()  # Load environment variables from .env file

    HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN")

    if is_pdf:
        print(f"Processing PDF: {query_or_file.name}")
        input_text = read_pdf(query_or_file)
    else:
        print(f"Processing search query: {query_or_file}")
        search_results = google_search(query_or_file)
        input_text = "\n\n".join(result["text"] for result in search_results if result["text"])

    # Split the input text into smaller chunks to fit within the token limit
    chunk_size = 1024  # Adjust as needed to stay within the token limit
    text_chunks = [input_text[i:i + chunk_size] for i in range(0, len(input_text), chunk_size)]
    print(f"Total number of chunks: {len(text_chunks)}")

    # Generate summaries for each chunk and concatenate them
    concatenated_summary = ""
    for chunk in text_chunks:
        prompt = format_prompt_with_instructions(chunk, instructions)
        chunk_summary = generate_text(prompt, temperature, repetition_penalty, top_p)
        concatenated_summary += f"{chunk_summary}\n\n"

    print("Final concatenated summary generated.")
    return concatenated_summary

# Function to clear cache
def clear_cache():
    try:
        # Clear Gradio cache
        cache_dir = tempfile.gettempdir()
        shutil.rmtree(os.path.join(cache_dir, "gradio"), ignore_errors=True)

        # Clear any custom cache you might have
        # For example, if you're caching PDF files or search results:
        if os.path.exists("output_summary.pdf"):
            os.remove("output_summary.pdf")

        # Add any other cache clearing operations here

        print("Cache cleared successfully.")
        return "Cache cleared successfully."
    except Exception as e:
        print(f"Error clearing cache: {e}")
        return f"Error clearing cache: {e}"

def summarization_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# PDF and Web Summarization Tool")

        with gr.Tab("Summarize PDF"):
            pdf_file = gr.File(label="Upload PDF", file_types=[".pdf"])
            pdf_instructions = gr.Textbox(label="Instructions for Summarization", placeholder="Enter instructions for summarization", lines=3)
            pdf_temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.7, step=0.01)
            pdf_top_p = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
            pdf_repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=0.5, maximum=2.0, value=1.0, step=0.1)
            pdf_summary_output = gr.Textbox(label="Concatenated Summary Output")
            pdf_summarize_button = gr.Button("Generate Summary")
            pdf_clear_cache_button = gr.Button("Clear Cache")

        with gr.Tab("Summarize Web Search"):
            search_query = gr.Textbox(label="Enter Search Query", placeholder="Enter search query")
            search_instructions = gr.Textbox(label="Instructions for Summarization", placeholder="Enter instructions for summarization", lines=3)
            search_temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.7, step=0.01)
            search_top_p = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
            search_repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=0.5, maximum=2.0, value=1.0, step=0.1)
            search_summary_output = gr.Textbox(label="Concatenated Summary Output")
            search_summarize_button = gr.Button("Generate Summary")
            search_clear_cache_button = gr.Button("Clear Cache")

        # Bind functions to button clicks
        pdf_summarize_button.click(
            fn=lambda file, instructions, temperature, top_p, repetition_penalty: generate_and_save_summary(file, True, instructions, temperature, top_p, repetition_penalty),
            inputs=[pdf_file, pdf_instructions, pdf_temperature, pdf_top_p, pdf_repetition_penalty],
            outputs=[pdf_summary_output]
        )
        search_summarize_button.click(
            fn=lambda query, instructions, temperature, top_p, repetition_penalty: generate_and_save_summary(query, False, instructions, temperature, top_p, repetition_penalty),
            inputs=[search_query, search_instructions, search_temperature, search_top_p, search_repetition_penalty],
            outputs=[search_summary_output]
        )
        pdf_clear_cache_button.click(fn=clear_cache, inputs=None, outputs=pdf_summary_output)
        search_clear_cache_button.click(fn=clear_cache, inputs=None, outputs=search_summary_output)

    return demo

# Launch the Gradio interface
demo = summarization_interface()
demo.launch()