File size: 7,876 Bytes
5090140
462aa5d
0b607fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
462aa5d
0b607fb
 
c8302a1
28ed44f
041d8cf
0b607fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
462aa5d
 
 
 
 
 
 
 
 
 
 
c8302a1
0b607fb
 
 
1dc5b0f
0b607fb
54eab8b
0b607fb
 
 
 
 
 
 
54eab8b
0b607fb
 
 
 
 
 
 
 
 
 
462aa5d
0b607fb
462aa5d
 
 
0b607fb
 
 
462aa5d
 
0b607fb
 
462aa5d
0b607fb
 
 
 
 
 
 
 
 
 
 
 
 
 
d32ce41
0b607fb
 
 
 
 
462aa5d
34461d3
0b607fb
 
 
 
 
 
a491b68
0b607fb
 
 
 
 
 
 
feeb0e7
0b607fb
 
 
feeb0e7
0b607fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47402cb
0b607fb
 
 
 
 
 
 
 
 
 
 
 
462aa5d
0b607fb
 
 
462aa5d
0b607fb
 
462aa5d
8da6a04
0b607fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import logging
import gradio as gr
from huggingface_hub import hf_hub_download
from transformers import HuggingFaceHub

from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from llama_cpp_agent.llm_output_settings import (
    LlmStructuredOutputSettings,
    LlmStructuredOutputType,
)
from llama_cpp_agent.tools import WebSearchTool
from llama_cpp_agent.prompt_templates import web_search_system_prompt, research_system_prompt
from pydantic import BaseModel, Field
from trafilatura import fetch_url, extract
import json
from datetime import datetime, timezone
from typing import List

llm = None
llm_model = None

huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")

examples = [
    ["latest news about Yann LeCun"],
    ["Latest news site:github.blog"],
    ["Where I can find best hotel in Galapagos, Ecuador intitle:hotel"],
    ["filetype:pdf intitle:python"]
]

def get_context_by_model(model_name):
    model_context_limits = {
        "Mistral-7B-Instruct-v0.3": 32768,
    }
    return model_context_limits.get(model_name, None)

def get_messages_formatter_type(model_name):
    model_name = model_name.lower()
    if "mistral" in model_name:
        return MessagesFormatterType.MISTRAL
    else:
        return MessagesFormatterType.CHATML

def get_model(temperature, top_p, repetition_penalty):
    return HuggingFaceHub(
        repo_id="mistralai/Mistral-7B-Instruct-v0.3",
        model_kwargs={
            "temperature": temperature,
            "top_p": top_p,
            "repetition_penalty": repetition_penalty,
            "max_length": 1000
        },
        huggingfacehub_api_token=huggingface_token
    )

def get_server_time():
    utc_time = datetime.now(timezone.utc)
    return utc_time.strftime("%Y-%m-%d %H:%M:%S")

def get_website_content_from_url(url: str) -> str:
    try:
        downloaded = fetch_url(url)
        result = extract(downloaded, include_formatting=True, include_links=True, output_format='json', url=url)
        if result:
            result = json.loads(result)
            return f'=========== Website Title: {result["title"]} ===========\n\n=========== Website URL: {url} ===========\n\n=========== Website Content ===========\n\n{result["raw_text"]}\n\n=========== Website Content End ===========\n\n'
        else:
            return ""
    except Exception as e:
        return f"An error occurred: {str(e)}"

class CitingSources(BaseModel):
    sources: List[str] = Field(
        ...,
        description="List of sources to cite. Should be an URL of the source. E.g. GitHub URL, Blogpost URL or Newsletter URL."
    )

def write_message_to_user():
    return "Please write the message to the user."

@spaces.GPU(duration=120)
def respond(
    message,
    history: list[tuple[str, str]],
    model,
    system_message,
    max_tokens,
    temperature,
    top_p,
    top_k,
    repeat_penalty,
):
    global llm
    global llm_model
    chat_template = get_messages_formatter_type(model)
    if llm is None or llm_model != model:
        llm = get_model(temperature, top_p, repeat_penalty)
        llm_model = model
    provider = LlamaCppPythonProvider(llm)
    logging.info(f"Loaded chat examples: {chat_template}")
    search_tool = WebSearchTool(
        llm_provider=provider,
        message_formatter_type=chat_template,
        max_tokens_search_results=12000,
        max_tokens_per_summary=2048,
    )

    web_search_agent = LlamaCppAgent(
        provider,
        system_prompt=web_search_system_prompt,
        predefined_messages_formatter_type=chat_template,
        debug_output=True,
    )

    answer_agent = LlamaCppAgent(
        provider,
        system_prompt=research_system_prompt,
        predefined_messages_formatter_type=chat_template,
        debug_output=True,
    )

    settings = provider.get_provider_default_settings()
    settings.stream = False
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty

    output_settings = LlmStructuredOutputSettings.from_functions(
        [search_tool.get_tool()]
    )

    messages = BasicChatHistory()

    for msn in history:
        user = {"role": Roles.user, "content": msn[0]}
        assistant = {"role": Roles.assistant, "content": msn[1]}
        messages.add_message(user)
        messages.add_message(assistant)

    result = web_search_agent.get_chat_response(
        message,
        llm_sampling_settings=settings,
        structured_output_settings=output_settings,
        add_message_to_chat_history=False,
        add_response_to_chat_history=False,
        print_output=False,
    )

    outputs = ""

    settings.stream = True
    response_text = answer_agent.get_chat_response(
        f"Write a detailed and complete research document that fulfills the following user request: '{message}', based on the information from the web below.\n\n" +
        result[0]["return_value"],
        role=Roles.tool,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=True,
        print_output=False,
    )

    for text in response_text:
        outputs += text
        yield outputs

    output_settings = LlmStructuredOutputSettings.from_pydantic_models(
        [CitingSources], LlmStructuredOutputType.object_instance
    )

    citing_sources = answer_agent.get_chat_response(
        "Cite the sources you used in your response.",
        role=Roles.tool,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=False,
        structured_output_settings=output_settings,
        print_output=False,
    )
    outputs += "\n\nSources:\n"
    outputs += "\n".join(citing_sources.sources)
    yield outputs

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Dropdown([
            'Mistral-7B-Instruct-v0.3'
        ],
            value="Mistral-7B-Instruct-v0.3",
            label="Model"
        ),
        gr.Textbox(value=web_search_system_prompt, label="System message"),
        gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.45, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
        ),
        gr.Slider(
            minimum=0,
            maximum=100,
            value=40,
            step=1,
            label="Top-k",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=2.0,
            value=1.1,
            step=0.1,
            label="Repetition penalty",
        ),
    ],
    theme=gr.themes.Soft(
        primary_hue="orange",
        secondary_hue="amber",
        neutral_hue="gray",
        font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
            body_background_fill_dark="#0c0505",
            block_background_fill_dark="#0c0505",
            block_border_width="1px",
            block_title_background_fill_dark="#1b0f0f",
            input_background_fill_dark="#140b0b",
            button_secondary_background_fill_dark="#140b0b",
            border_color_accent_dark="#1b0f0f",
            border_color_primary_dark="#1b0f0f",
            slider_color="#ff911a",
            button_primary_background_fill="#ff911a",
            button_primary_background_fill_dark="#ff911a",
            button_primary_text_color="#f9f9f9",
            button_primary_text_color_dark="#f9f9f9"
        ),
    examples=examples,
    title="llama.cpp agent",
)

demo.queue().launch()