Shreyas094 commited on
Commit
b6325ae
·
verified ·
1 Parent(s): 9034127

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -1
app.py CHANGED
@@ -66,6 +66,21 @@ def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[
66
  def get_embeddings():
67
  return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
  def update_vectors(files, parser):
70
  global uploaded_documents
71
  logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}")
@@ -78,7 +93,7 @@ def update_vectors(files, parser):
78
  label="Select documents to query"
79
  )
80
 
81
- embed = get_embeddings()
82
  total_chunks = 0
83
 
84
  all_data = []
@@ -111,12 +126,19 @@ def update_vectors(files, parser):
111
  database.save_local("faiss_database")
112
  logging.info("FAISS database saved")
113
 
 
 
 
 
114
  return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", gr.CheckboxGroup(
115
  choices=[doc["name"] for doc in uploaded_documents],
116
  value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
117
  label="Select documents to query"
118
  )
119
 
 
 
 
120
  def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temperature=0.2, should_stop=False):
121
  print(f"Starting generate_chunked_response with {num_calls} calls")
122
  full_response = ""
 
66
  def get_embeddings():
67
  return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
68
 
69
+ # File to store the list of uploaded documents
70
+ DOCUMENTS_FILE = "uploaded_documents.json"
71
+
72
+ def load_uploaded_documents():
73
+ global uploaded_documents
74
+ if os.path.exists(DOCUMENTS_FILE):
75
+ with open(DOCUMENTS_FILE, 'r') as f:
76
+ uploaded_documents = json.load(f)
77
+ else:
78
+ uploaded_documents = []
79
+
80
+ def save_uploaded_documents():
81
+ with open(DOCUMENTS_FILE, 'w') as f:
82
+ json.dump(uploaded_documents, f)
83
+
84
  def update_vectors(files, parser):
85
  global uploaded_documents
86
  logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}")
 
93
  label="Select documents to query"
94
  )
95
 
96
+ embed = HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
97
  total_chunks = 0
98
 
99
  all_data = []
 
126
  database.save_local("faiss_database")
127
  logging.info("FAISS database saved")
128
 
129
+ # Save the updated list of documents
130
+ save_uploaded_documents()
131
+ logging.info("Uploaded documents list saved")
132
+
133
  return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", gr.CheckboxGroup(
134
  choices=[doc["name"] for doc in uploaded_documents],
135
  value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
136
  label="Select documents to query"
137
  )
138
 
139
+ # Make sure to call this function at the start of your script
140
+ load_uploaded_documents()
141
+
142
  def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temperature=0.2, should_stop=False):
143
  print(f"Starting generate_chunked_response with {num_calls} calls")
144
  full_response = ""