Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -247,23 +247,42 @@ def respond(message, history, model, temperature, num_calls, use_web_search, sel
|
|
| 247 |
logging.info(f"User Query: {message}")
|
| 248 |
logging.info(f"Model Used: {model}")
|
| 249 |
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
| 250 |
-
|
| 251 |
logging.info(f"Selected Documents: {selected_docs}")
|
| 252 |
|
| 253 |
try:
|
| 254 |
if use_web_search:
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
else:
|
| 261 |
embed = get_embeddings()
|
| 262 |
if os.path.exists("faiss_database"):
|
| 263 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
| 264 |
retriever = database.as_retriever()
|
| 265 |
|
| 266 |
-
# Filter relevant documents based on user selection
|
| 267 |
all_relevant_docs = retriever.get_relevant_documents(message)
|
| 268 |
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
|
| 269 |
|
|
@@ -273,30 +292,34 @@ def respond(message, history, model, temperature, num_calls, use_web_search, sel
|
|
| 273 |
|
| 274 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
| 275 |
else:
|
| 276 |
-
context_str = "No documents available."
|
| 277 |
yield "No documents available. Please upload PDF documents to answer questions."
|
| 278 |
return
|
| 279 |
|
| 280 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
first_line = partial_response.split('\n')[0] if partial_response else ''
|
| 284 |
-
logging.info(f"Generated Response (first line): {first_line}")
|
| 285 |
-
yield partial_response
|
| 286 |
else:
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
except Exception as e:
|
| 293 |
logging.error(f"Error with {model}: {str(e)}")
|
| 294 |
-
|
| 295 |
-
logging.info("Falling back to Mistral model due to Phi-3 error")
|
| 296 |
-
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
| 297 |
-
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs)
|
| 298 |
-
else:
|
| 299 |
-
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
| 300 |
|
| 301 |
logging.basicConfig(level=logging.DEBUG)
|
| 302 |
|
|
@@ -481,57 +504,40 @@ document_selector = gr.CheckboxGroup(label="Select documents to query")
|
|
| 481 |
|
| 482 |
use_web_search = gr.Checkbox(label="Use Web Search", value=True)
|
| 483 |
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
color_accent_soft_dark="transparent",
|
| 511 |
-
code_background_fill_dark="#140b0b"
|
| 512 |
-
),
|
| 513 |
-
css=css,
|
| 514 |
-
examples=[
|
| 515 |
-
["Tell me about the contents of the uploaded PDFs."],
|
| 516 |
-
["What are the main topics discussed in the documents?"],
|
| 517 |
-
["Can you summarize the key points from the PDFs?"]
|
| 518 |
-
],
|
| 519 |
-
cache_examples=False,
|
| 520 |
-
analytics_enabled=False,
|
| 521 |
-
)
|
| 522 |
-
|
| 523 |
-
# Add file upload functionality
|
| 524 |
-
with demo:
|
| 525 |
-
gr.Markdown("## Upload PDF Documents")
|
| 526 |
|
| 527 |
with gr.Row():
|
| 528 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
| 529 |
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
|
| 530 |
update_button = gr.Button("Upload Document")
|
| 531 |
-
|
| 532 |
update_output = gr.Textbox(label="Update Status")
|
| 533 |
-
|
| 534 |
-
# Update both the output text and the document selector
|
| 535 |
update_button.click(update_vectors,
|
| 536 |
inputs=[file_input, parser_dropdown],
|
| 537 |
outputs=[update_output, document_selector])
|
|
@@ -539,12 +545,12 @@ with demo:
|
|
| 539 |
gr.Markdown(
|
| 540 |
"""
|
| 541 |
## How to use
|
| 542 |
-
1.
|
| 543 |
-
2.
|
| 544 |
-
3. Select the
|
| 545 |
-
4.
|
| 546 |
-
5.
|
| 547 |
-
6.
|
| 548 |
7. Use the provided examples or ask your own questions.
|
| 549 |
"""
|
| 550 |
)
|
|
|
|
| 247 |
logging.info(f"User Query: {message}")
|
| 248 |
logging.info(f"Model Used: {model}")
|
| 249 |
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
|
|
|
| 250 |
logging.info(f"Selected Documents: {selected_docs}")
|
| 251 |
|
| 252 |
try:
|
| 253 |
if use_web_search:
|
| 254 |
+
search_results = duckduckgo_search(message)
|
| 255 |
+
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
|
| 256 |
+
for result in search_results if 'body' in result)
|
| 257 |
+
|
| 258 |
+
prompt = f"""Using the following context:
|
| 259 |
+
{context}
|
| 260 |
+
Write a detailed and complete research document that fulfills the following user request: '{message}'
|
| 261 |
+
After writing the document, please provide a list of sources used in your response."""
|
| 262 |
+
|
| 263 |
+
if model == "@cf/meta/llama-3.1-8b-instruct":
|
| 264 |
+
for response in get_response_from_cloudflare(prompt="", context=context, query=message, num_calls=num_calls, temperature=temperature, search_type="web"):
|
| 265 |
+
yield response
|
| 266 |
+
else:
|
| 267 |
+
client = InferenceClient(model, token=huggingface_token)
|
| 268 |
+
response = ""
|
| 269 |
+
for i in range(num_calls):
|
| 270 |
+
for msg in client.chat_completion(
|
| 271 |
+
messages=[{"role": "user", "content": prompt}],
|
| 272 |
+
max_tokens=10000,
|
| 273 |
+
temperature=temperature,
|
| 274 |
+
stream=True,
|
| 275 |
+
):
|
| 276 |
+
if msg.choices and msg.choices[0].delta and msg.choices[0].delta.content:
|
| 277 |
+
chunk = msg.choices[0].delta.content
|
| 278 |
+
response += chunk
|
| 279 |
+
yield response
|
| 280 |
else:
|
| 281 |
embed = get_embeddings()
|
| 282 |
if os.path.exists("faiss_database"):
|
| 283 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
| 284 |
retriever = database.as_retriever()
|
| 285 |
|
|
|
|
| 286 |
all_relevant_docs = retriever.get_relevant_documents(message)
|
| 287 |
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
|
| 288 |
|
|
|
|
| 292 |
|
| 293 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
| 294 |
else:
|
|
|
|
| 295 |
yield "No documents available. Please upload PDF documents to answer questions."
|
| 296 |
return
|
| 297 |
|
| 298 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
| 299 |
+
for response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
| 300 |
+
yield response
|
|
|
|
|
|
|
|
|
|
| 301 |
else:
|
| 302 |
+
prompt = f"""Using the following context from the PDF documents:
|
| 303 |
+
{context_str}
|
| 304 |
+
Write a detailed and complete response that answers the following user question: '{message}'"""
|
| 305 |
+
|
| 306 |
+
client = InferenceClient(model, token=huggingface_token)
|
| 307 |
+
response = ""
|
| 308 |
+
for i in range(num_calls):
|
| 309 |
+
for msg in client.chat_completion(
|
| 310 |
+
messages=[{"role": "user", "content": prompt}],
|
| 311 |
+
max_tokens=10000,
|
| 312 |
+
temperature=temperature,
|
| 313 |
+
stream=True,
|
| 314 |
+
):
|
| 315 |
+
if msg.choices and msg.choices[0].delta and msg.choices[0].delta.content:
|
| 316 |
+
chunk = msg.choices[0].delta.content
|
| 317 |
+
response += chunk
|
| 318 |
+
yield response
|
| 319 |
+
|
| 320 |
except Exception as e:
|
| 321 |
logging.error(f"Error with {model}: {str(e)}")
|
| 322 |
+
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
|
| 324 |
logging.basicConfig(level=logging.DEBUG)
|
| 325 |
|
|
|
|
| 504 |
|
| 505 |
use_web_search = gr.Checkbox(label="Use Web Search", value=True)
|
| 506 |
|
| 507 |
+
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 508 |
+
gr.Markdown("# AI-powered Web Search and PDF Chat Assistant")
|
| 509 |
+
gr.Markdown("Chat with your PDFs or use web search to answer questions")
|
| 510 |
+
|
| 511 |
+
use_web_search = gr.Checkbox(label="Use Web Search", value=True)
|
| 512 |
+
document_selector = gr.CheckboxGroup(label="Select documents to query")
|
| 513 |
+
|
| 514 |
+
chat_interface = gr.ChatInterface(
|
| 515 |
+
respond,
|
| 516 |
+
additional_inputs=[
|
| 517 |
+
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
|
| 518 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
| 519 |
+
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
| 520 |
+
use_web_search,
|
| 521 |
+
document_selector
|
| 522 |
+
],
|
| 523 |
+
title="Chat Interface",
|
| 524 |
+
description="Ask questions about your PDFs or use web search",
|
| 525 |
+
examples=[
|
| 526 |
+
["Tell me about the contents of the uploaded PDFs."],
|
| 527 |
+
["What are the main topics discussed in the documents?"],
|
| 528 |
+
["Can you summarize the key points from the PDFs?"]
|
| 529 |
+
],
|
| 530 |
+
cache_examples=False,
|
| 531 |
+
analytics_enabled=False,
|
| 532 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 533 |
|
| 534 |
with gr.Row():
|
| 535 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
| 536 |
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
|
| 537 |
update_button = gr.Button("Upload Document")
|
| 538 |
+
|
| 539 |
update_output = gr.Textbox(label="Update Status")
|
| 540 |
+
|
|
|
|
| 541 |
update_button.click(update_vectors,
|
| 542 |
inputs=[file_input, parser_dropdown],
|
| 543 |
outputs=[update_output, document_selector])
|
|
|
|
| 545 |
gr.Markdown(
|
| 546 |
"""
|
| 547 |
## How to use
|
| 548 |
+
1. Use the "Use Web Search" checkbox to switch between PDF chat and web search.
|
| 549 |
+
2. Upload PDF documents using the file input at the bottom.
|
| 550 |
+
3. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
|
| 551 |
+
4. Select the documents you want to query using the checkboxes.
|
| 552 |
+
5. Adjust Temperature and Number of API Calls to fine-tune the response generation.
|
| 553 |
+
6. Type your questions in the chat interface and press Enter to get responses.
|
| 554 |
7. Use the provided examples or ask your own questions.
|
| 555 |
"""
|
| 556 |
)
|