Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -77,7 +77,7 @@ def update_vectors(files, parser):
|
|
77 |
|
78 |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."
|
79 |
|
80 |
-
def generate_chunked_response(prompt, model, max_tokens=1000, num_calls=
|
81 |
print(f"Starting generate_chunked_response with {num_calls} calls")
|
82 |
client = InferenceClient(model, token=huggingface_token)
|
83 |
full_response = ""
|
@@ -172,7 +172,7 @@ def respond(message, history, model, temperature, num_calls, use_web_search):
|
|
172 |
for partial_response, _ in get_response_from_pdf(message, model, num_calls=num_calls, temperature=temperature):
|
173 |
yield partial_response
|
174 |
|
175 |
-
def get_response_with_search(query, model, num_calls=
|
176 |
search_results = duckduckgo_search(query)
|
177 |
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
|
178 |
for result in search_results if 'body' in result)
|
@@ -197,7 +197,7 @@ After writing the document, please provide a list of sources used in your respon
|
|
197 |
main_content += chunk
|
198 |
yield main_content, "" # Yield partial main content without sources
|
199 |
|
200 |
-
def get_response_from_pdf(query, model, num_calls=
|
201 |
embed = get_embeddings()
|
202 |
if os.path.exists("faiss_database"):
|
203 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
@@ -211,7 +211,9 @@ def get_response_from_pdf(query, model, num_calls=3, temperature=0.2):
|
|
211 |
|
212 |
prompt = f"""Using the following context from the PDF documents:
|
213 |
{context_str}
|
214 |
-
Write a detailed and complete response that answers the following user question
|
|
|
|
|
215 |
|
216 |
client = InferenceClient(model, token=huggingface_token)
|
217 |
|
@@ -219,7 +221,7 @@ Write a detailed and complete response that answers the following user question:
|
|
219 |
for i in range(num_calls):
|
220 |
for message in client.chat_completion(
|
221 |
messages=[{"role": "user", "content": prompt}],
|
222 |
-
max_tokens=
|
223 |
temperature=temperature,
|
224 |
stream=True,
|
225 |
):
|
|
|
77 |
|
78 |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."
|
79 |
|
80 |
+
def generate_chunked_response(prompt, model, max_tokens=1000, num_calls=5, temperature=0.2, should_stop=False):
|
81 |
print(f"Starting generate_chunked_response with {num_calls} calls")
|
82 |
client = InferenceClient(model, token=huggingface_token)
|
83 |
full_response = ""
|
|
|
172 |
for partial_response, _ in get_response_from_pdf(message, model, num_calls=num_calls, temperature=temperature):
|
173 |
yield partial_response
|
174 |
|
175 |
+
def get_response_with_search(query, model, num_calls=5, temperature=0.2):
|
176 |
search_results = duckduckgo_search(query)
|
177 |
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
|
178 |
for result in search_results if 'body' in result)
|
|
|
197 |
main_content += chunk
|
198 |
yield main_content, "" # Yield partial main content without sources
|
199 |
|
200 |
+
def get_response_from_pdf(query, model, num_calls=5, temperature=0.2):
|
201 |
embed = get_embeddings()
|
202 |
if os.path.exists("faiss_database"):
|
203 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
|
|
211 |
|
212 |
prompt = f"""Using the following context from the PDF documents:
|
213 |
{context_str}
|
214 |
+
Write a detailed and complete response that fully answers the following user question.
|
215 |
+
Ensure your response covers all relevant information and is not cut off: '{query}'
|
216 |
+
If the response is long, please continue until you have provided a comprehensive answer."""
|
217 |
|
218 |
client = InferenceClient(model, token=huggingface_token)
|
219 |
|
|
|
221 |
for i in range(num_calls):
|
222 |
for message in client.chat_completion(
|
223 |
messages=[{"role": "user", "content": prompt}],
|
224 |
+
max_tokens=2000,
|
225 |
temperature=temperature,
|
226 |
stream=True,
|
227 |
):
|