SearchGPT / app.py
Shreyas094's picture
Update app.py
7a7b1d4 verified
raw
history blame
28.2 kB
import os
import json
import re
import gradio as gr
import requests
from duckduckgo_search import DDGS
from typing import List
from pydantic import BaseModel, Field
from tempfile import NamedTemporaryFile
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from llama_parse import LlamaParse
from langchain_core.documents import Document
from huggingface_hub import InferenceClient
import inspect
import logging
import shutil
# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
ACCOUNT_ID = os.environ.get("CLOUDFARE_ACCOUNT_ID")
API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/a17f03e0f049ccae0c15cdcf3b9737ce/ai/run/"
print(f"ACCOUNT_ID: {ACCOUNT_ID}")
print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set")
MODELS = [
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"@cf/meta/llama-3.1-8b-instruct",
"mistralai/Mistral-Nemo-Instruct-2407"
]
# Initialize LlamaParse
llama_parser = LlamaParse(
api_key=llama_cloud_api_key,
result_type="markdown",
num_workers=4,
verbose=True,
language="en",
)
def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
file_path = os.path.join(UPLOAD_FOLDER, os.path.basename(file.name))
shutil.copy(file.name, file_path)
if parser == "pypdf":
loader = PyPDFLoader(file_path)
return loader.load_and_split()
elif parser == "llamaparse":
try:
documents = llama_parser.load_data(file_path)
return [Document(page_content=doc.text, metadata={"source": file_path}) for doc in documents]
except Exception as e:
logging.error(f"Error using Llama Parse: {str(e)}")
logging.info("Falling back to PyPDF parser")
loader = PyPDFLoader(file_path)
return loader.load_and_split()
else:
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
def update_vectors(files, parser):
global uploaded_documents
logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}")
if not files:
logging.warning("No files provided for update_vectors")
return "Please upload at least one PDF file.", gr.update(choices=[], value=[])
embed = get_embeddings()
total_chunks = 0
all_data = []
for file in files:
logging.info(f"Processing file: {file.name}")
try:
data = load_document(file, parser)
logging.info(f"Loaded {len(data)} chunks from {file.name}")
all_data.extend(data)
total_chunks += len(data)
if not any(doc["name"] == os.path.basename(file.name) for doc in uploaded_documents):
uploaded_documents.append({"name": os.path.basename(file.name), "selected": True})
logging.info(f"Added new document to uploaded_documents: {file.name}")
else:
logging.info(f"Document already exists in uploaded_documents: {file.name}")
except Exception as e:
logging.error(f"Error processing file {file.name}: {str(e)}")
logging.info(f"Total chunks processed: {total_chunks}")
if all_data:
if os.path.exists("faiss_database"):
logging.info("Updating existing FAISS database")
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
database.add_documents(all_data)
else:
logging.info("Creating new FAISS database")
database = FAISS.from_documents(all_data, embed)
database.save_local("faiss_database")
logging.info("FAISS database saved")
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", gr.update(choices=[doc["name"] for doc in uploaded_documents], value=[doc["name"] for doc in uploaded_documents if doc["selected"]])
else:
return "No data was processed. Please check your files and try again.", gr.update(choices=[doc["name"] for doc in uploaded_documents], value=[doc["name"] for doc in uploaded_documents if doc["selected"]])
UPLOAD_FOLDER = "uploaded_files"
if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER)
# Add this new function to handle file deletion
def delete_file(file_name):
global uploaded_documents
logging.info(f"Attempting to delete file: {file_name}")
# Remove the file from uploaded_documents
uploaded_documents = [doc for doc in uploaded_documents if doc["name"] != file_name]
# Remove the file from the file system if it exists
file_path = os.path.join(UPLOAD_FOLDER, file_name)
if os.path.exists(file_path):
os.remove(file_path)
logging.info(f"Deleted file: {file_path}")
else:
logging.warning(f"File not found: {file_path}")
# Rebuild the FAISS database
rebuild_faiss_database()
return gr.update(value=[doc["name"] for doc in uploaded_documents], choices=[doc["name"] for doc in uploaded_documents])
def rebuild_faiss_database():
logging.info("Rebuilding FAISS database")
embed = get_embeddings()
all_data = []
for doc in uploaded_documents:
try:
file_path = os.path.join(UPLOAD_FOLDER, doc["name"])
temp_file = NamedTemporaryFile(delete=False, suffix=".pdf", dir=UPLOAD_FOLDER)
temp_file.write(open(file_path, 'rb').read())
temp_file.close()
data = load_document(temp_file, "llamaparse")
all_data.extend(data)
os.unlink(temp_file.name)
except Exception as e:
logging.error(f"Error processing file {doc['name']}: {str(e)}")
if all_data:
database = FAISS.from_documents(all_data, embed)
database.save_local("faiss_database")
logging.info("FAISS database rebuilt and saved")
else:
if os.path.exists("faiss_database"):
shutil.rmtree("faiss_database")
logging.info("No documents left, removed FAISS database")
def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temperature=0.2, should_stop=False):
print(f"Starting generate_chunked_response with {num_calls} calls")
full_response = ""
messages = [{"role": "user", "content": prompt}]
if model == "@cf/meta/llama-3.1-8b-instruct":
# Cloudflare API
for i in range(num_calls):
print(f"Starting Cloudflare API call {i+1}")
if should_stop:
print("Stop clicked, breaking loop")
break
try:
response = requests.post(
f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct",
headers={"Authorization": f"Bearer {API_TOKEN}"},
json={
"stream": true,
"messages": [
{"role": "system", "content": "You are a friendly assistant"},
{"role": "user", "content": prompt}
],
"max_tokens": max_tokens,
"temperature": temperature
},
stream=true
)
for line in response.iter_lines():
if should_stop:
print("Stop clicked during streaming, breaking")
break
if line:
try:
json_data = json.loads(line.decode('utf-8').split('data: ')[1])
chunk = json_data['response']
full_response += chunk
except json.JSONDecodeError:
continue
print(f"Cloudflare API call {i+1} completed")
except Exception as e:
print(f"Error in generating response from Cloudflare: {str(e)}")
else:
# Original Hugging Face API logic
client = InferenceClient(model, token=huggingface_token)
for i in range(num_calls):
print(f"Starting Hugging Face API call {i+1}")
if should_stop:
print("Stop clicked, breaking loop")
break
try:
for message in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
stream=True,
):
if should_stop:
print("Stop clicked during streaming, breaking")
break
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
chunk = message.choices[0].delta.content
full_response += chunk
print(f"Hugging Face API call {i+1} completed")
except Exception as e:
print(f"Error in generating response from Hugging Face: {str(e)}")
# Clean up the response
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
clean_response = clean_response.replace("Using the following context:", "").strip()
clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
# Remove duplicate paragraphs and sentences
paragraphs = clean_response.split('\n\n')
unique_paragraphs = []
for paragraph in paragraphs:
if paragraph not in unique_paragraphs:
sentences = paragraph.split('. ')
unique_sentences = []
for sentence in sentences:
if sentence not in unique_sentences:
unique_sentences.append(sentence)
unique_paragraphs.append('. '.join(unique_sentences))
final_response = '\n\n'.join(unique_paragraphs)
print(f"Final clean response: {final_response[:100]}...")
return final_response
def duckduckgo_search(query):
with DDGS() as ddgs:
results = ddgs.text(query, max_results=5)
return results
class CitingSources(BaseModel):
sources: List[str] = Field(
...,
description="List of sources to cite. Should be an URL of the source."
)
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls, selected_docs):
if not message.strip():
return "", history
history = history + [(message, "")]
try:
for response in respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
history[-1] = (message, response)
yield history
except gr.CancelledError:
yield history
except Exception as e:
logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
yield history
def retry_last_response(history, use_web_search, model, temperature, num_calls):
if not history:
return history
last_user_msg = history[-1][0]
history = history[:-1] # Remove the last response
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)
def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
logging.info(f"User Query: {message}")
logging.info(f"Model Used: {model}")
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
logging.info(f"Selected Documents: {selected_docs}")
try:
if use_web_search:
logging.info("Entering web search flow")
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
response = f"{main_content}\n\n{sources}"
logging.info(f"Generated Response (first 100 chars): {response[:100]}...")
yield response
else:
logging.info("Entering PDF search flow")
embed = get_embeddings()
if os.path.exists("faiss_database"):
logging.info("FAISS database exists, loading it")
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
retriever = database.as_retriever()
logging.info("Attempting to retrieve relevant documents")
try:
relevant_docs = retriever.invoke(message)
logging.info(f"Retrieved {len(relevant_docs)} relevant documents")
except Exception as e:
logging.error(f"Error retrieving relevant documents: {str(e)}")
yield f"An error occurred while retrieving relevant documents: {str(e)}"
return
# Filter relevant documents based on user selection
filtered_docs = [doc for doc in relevant_docs if os.path.basename(doc.metadata["source"]) in [os.path.basename(doc) for doc in selected_docs]]
logging.info(f"Number of filtered documents: {len(filtered_docs)}")
if not filtered_docs:
logging.warning("No relevant information found in the selected documents")
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
return
context_str = "\n".join([doc.page_content for doc in filtered_docs])
logging.info(f"Total context length: {len(context_str)}")
else:
logging.warning("No FAISS database found")
context_str = "No documents available."
yield "No documents available. Please upload PDF documents to answer questions."
return
if model == "@cf/meta/llama-3.1-8b-instruct":
logging.info("Using Cloudflare API")
for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"):
logging.info(f"Generated Response (first 100 chars): {partial_response[:100]}...")
yield partial_response
else:
logging.info("Entering PDF search flow")
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
logging.info(f"Generated Response (first 100 chars): {partial_response[:100]}...")
yield partial_response
logging.info("Finished respond function")
except Exception as e:
logging.error(f"Unexpected error in respond function: {str(e)}")
yield f"An unexpected error occurred: {str(e)}"
logging.info("Finished respond function")
logging.info(f"Selected docs: {selected_docs}")
def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
headers = {
"Authorization": f"Bearer {API_TOKEN}",
"Content-Type": "application/json"
}
model = "@cf/meta/llama-3.1-8b-instruct"
if search_type == "pdf":
instruction = f"""Using the following context from the PDF documents:
{context}
Write a detailed and complete response that answers the following user question: '{query}'"""
else: # web search
instruction = f"""Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""
inputs = [
{"role": "system", "content": instruction},
{"role": "user", "content": query}
]
payload = {
"messages": inputs,
"stream": True,
"temperature": temperature,
"max_tokens": 32000
}
full_response = ""
for i in range(num_calls):
try:
with requests.post(f"{API_BASE_URL}{model}", headers=headers, json=payload, stream=True) as response:
if response.status_code == 200:
for line in response.iter_lines():
if line:
try:
json_response = json.loads(line.decode('utf-8').split('data: ')[1])
if 'response' in json_response:
chunk = json_response['response']
full_response += chunk
yield full_response
except (json.JSONDecodeError, IndexError) as e:
logging.error(f"Error parsing streaming response: {str(e)}")
continue
else:
logging.error(f"HTTP Error: {response.status_code}, Response: {response.text}")
yield f"I apologize, but I encountered an HTTP error: {response.status_code}. Please try again later."
except Exception as e:
logging.error(f"Error in generating response from Cloudflare: {str(e)}")
yield f"I apologize, but an error occurred: {str(e)}. Please try again later."
if not full_response:
yield "I apologize, but I couldn't generate a response at this time. Please try again later."
def get_response_with_search(query, model, num_calls=3, temperature=0.2):
search_results = duckduckgo_search(query)
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
for result in search_results if 'body' in result)
prompt = f"""Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""
if model == "@cf/meta/llama-3.1-8b-instruct":
# Use Cloudflare API
for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"):
yield response, "" # Yield streaming response without sources
else:
# Use Hugging Face API
client = InferenceClient(model, token=huggingface_token)
main_content = ""
for i in range(num_calls):
for message in client.chat_completion(
messages=[{"role": "user", "content": prompt}],
max_tokens=10000,
temperature=temperature,
stream=True,
):
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
chunk = message.choices[0].delta.content
main_content += chunk
yield main_content, "" # Yield partial main content without sources
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
embed = get_embeddings()
if os.path.exists("faiss_database"):
logging.info("Loading FAISS database")
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
else:
logging.warning("No FAISS database found")
yield "No documents available. Please upload PDF documents to answer questions."
return
retriever = database.as_retriever()
logging.info(f"Retrieving relevant documents for query: {query}")
try:
relevant_docs = retriever.invoke(query)
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
except Exception as e:
logging.error(f"Error retrieving relevant documents: {str(e)}")
yield f"An error occurred while retrieving relevant documents: {str(e)}"
return
# Log the sources of relevant documents
logging.info(f"Sources of relevant documents: {[os.path.basename(doc.metadata['source']) for doc in relevant_docs]}")
# Filter relevant_docs based on selected documents
filtered_docs = [doc for doc in relevant_docs if os.path.basename(doc.metadata["source"]) in selected_docs]
logging.info(f"Number of filtered documents: {len(filtered_docs)}")
if not filtered_docs:
logging.warning(f"No relevant information found in the selected documents: {selected_docs}")
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
return
for doc in filtered_docs:
logging.info(f"Document source: {os.path.basename(doc.metadata['source'])}")
logging.info(f"Document content preview: {doc.page_content[:100]}...") # Log first 100 characters of each document
context_str = "\n".join([doc.page_content for doc in filtered_docs])
logging.info(f"Total context length: {len(context_str)}")
if model == "@cf/meta/llama-3.1-8b-instruct":
logging.info("Using Cloudflare API")
# Use Cloudflare API with the retrieved context
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
yield response
else:
logging.info("Using Hugging Face API")
# Use Hugging Face API
prompt = f"""Using the following context from the PDF documents:
{context_str}
Write a detailed and complete response that answers the following user question: '{query}'"""
client = InferenceClient(model, token=huggingface_token)
response = ""
for i in range(num_calls):
logging.info(f"API call {i+1}/{num_calls}")
try:
for message in client.chat_completion(
messages=[{"role": "user", "content": prompt}],
max_tokens=10000,
temperature=temperature,
stream=True,
):
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
chunk = message.choices[0].delta.content
response += chunk
yield response # Yield partial response
logging.info(f"API call {i+1} completed successfully")
except Exception as e:
logging.error(f"Error in API call {i+1}: {str(e)}")
logging.info("Finished generating response")
logging.info(f"Relevant docs: {[doc.metadata['source'] for doc in relevant_docs]}")
logging.info(f"Selected docs: {selected_docs}")
logging.info(f"Filtered docs: {[doc.metadata['source'] for doc in filtered_docs]}")
def vote(data: gr.LikeData):
if data.liked:
print(f"You upvoted this response: {data.value}")
else:
print(f"You downvoted this response: {data.value}")
css = """
/* Fine-tune chatbox size */
.chatbot-container {
height: 600px !important;
width: 100% !important;
}
.chatbot-container > div {
height: 100%;
width: 100%;
}
"""
uploaded_documents = []
def display_documents():
return gr.CheckboxGroup(
choices=[os.path.basename(doc["name"]) for doc in uploaded_documents],
value=[os.path.basename(doc["name"]) for doc in uploaded_documents if doc["selected"]],
label="Select documents to query"
)
# Define the checkbox outside the demo block
document_selector = gr.CheckboxGroup(label="Select documents to query")
use_web_search = gr.Checkbox(label="Use Web Search", value=True)
demo = gr.ChatInterface(
chatbot_interface,
additional_inputs=[
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
use_web_search,
document_selector # This should now correctly pass the selected documents
],
title="AI-powered Web Search and PDF Chat Assistant",
description="Chat with your PDFs or use web search to answer questions (Please use toggle under Additional Inputs to swithc between PDF and Web Search, Default Value Web Search)",
theme=gr.themes.Soft(
primary_hue="orange",
secondary_hue="amber",
neutral_hue="gray",
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]
).set(
body_background_fill_dark="#0c0505",
block_background_fill_dark="#0c0505",
block_border_width="1px",
block_title_background_fill_dark="#1b0f0f",
input_background_fill_dark="#140b0b",
button_secondary_background_fill_dark="#140b0b",
border_color_accent_dark="#1b0f0f",
border_color_primary_dark="#1b0f0f",
background_fill_secondary_dark="#0c0505",
color_accent_soft_dark="transparent",
code_background_fill_dark="#140b0b"
),
css=css,
examples=[
["Tell me about the contents of the uploaded PDFs."],
["What are the main topics discussed in the documents?"],
["Can you summarize the key points from the PDFs?"]
],
cache_examples=False,
analytics_enabled=False,
)
# Add file upload functionality
with demo:
gr.Markdown("## Upload PDF Documents")
with gr.Row():
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
update_button = gr.Button("Upload Document")
update_output = gr.Textbox(label="Update Status")
# Create a new row for displaying uploaded files with delete buttons
with gr.Row():
uploaded_files = gr.CheckboxGroup(label="Uploaded Documents", interactive=True)
delete_button = gr.Button("Delete Selected")
# Update both the output text and the document selector
update_button.click(
update_vectors,
inputs=[file_input, parser_dropdown],
outputs=[update_output, uploaded_files]
)
# Handle file deletion
delete_button.click(
lambda selected: [delete_file(file) for file in selected],
inputs=[uploaded_files],
outputs=[uploaded_files]
)
# Update the document selector in the chat interface
uploaded_files.change(
lambda x: gr.update(choices=x, value=x),
inputs=[uploaded_files],
outputs=[document_selector]
)
gr.Markdown(
"""
## How to use
1. Upload PDF documents using the file input at the top.
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
3. Select the documents you want to query using the checkboxes.
4. Ask questions in the chat interface.
5. Toggle "Use Web Search" to switch between PDF chat and web search.
6. Adjust Temperature and Number of API Calls to fine-tune the response generation.
7. Use the provided examples or ask your own questions.
"""
)
if __name__ == "__main__":
demo.launch(share=True)