Update app.py
Browse files
app.py
CHANGED
@@ -39,8 +39,6 @@ from typing import List, Dict, Tuple
|
|
39 |
import datetime
|
40 |
from abc import ABC, abstractmethod
|
41 |
from typing import List, Dict, Any
|
42 |
-
import spacy
|
43 |
-
from textblob import TextBlob
|
44 |
|
45 |
# Automatically get the current year
|
46 |
CURRENT_YEAR = datetime.datetime.now().year
|
@@ -86,7 +84,7 @@ custom_models = fetch_custom_models()
|
|
86 |
all_models = ["huggingface", "groq", "mistral"] + custom_models
|
87 |
|
88 |
# Determine the default model
|
89 |
-
default_model = CUSTOM_LLM_DEFAULT_MODEL if CUSTOM_LLM_DEFAULT_MODEL in all_models else "
|
90 |
|
91 |
logger.info(f"Default model selected: {default_model}")
|
92 |
|
@@ -536,212 +534,75 @@ def prepare_documents_for_bm25(documents: List[Dict]) -> Tuple[List[str], List[D
|
|
536 |
doc_texts.append(doc_text)
|
537 |
return doc_texts, documents
|
538 |
|
539 |
-
|
540 |
-
class ImprovedRanking:
|
541 |
-
def __init__(self):
|
542 |
-
# Load spacy for text analysis
|
543 |
-
self.nlp = spacy.load('en_core_web_sm')
|
544 |
-
|
545 |
-
def analyze_query(self, query: str) -> Dict:
|
546 |
-
"""
|
547 |
-
Analyze query to determine appropriate weights
|
548 |
-
|
549 |
-
Args:
|
550 |
-
query: Search query string
|
551 |
-
|
552 |
-
Returns:
|
553 |
-
Dictionary with query analysis results
|
554 |
-
"""
|
555 |
-
doc = self.nlp(query)
|
556 |
-
|
557 |
-
analysis = {
|
558 |
-
'word_count': len(query.split()),
|
559 |
-
'has_entities': bool(doc.ents),
|
560 |
-
'is_question': any(token.tag_ == 'WP' or token.tag_ == 'WRB' for token in doc),
|
561 |
-
'sentiment': TextBlob(query).sentiment.polarity
|
562 |
-
}
|
563 |
-
|
564 |
-
return analysis
|
565 |
-
|
566 |
-
def get_adaptive_weights(self, query: str) -> Tuple[float, float]:
|
567 |
-
"""
|
568 |
-
Calculate adaptive weights based on query characteristics
|
569 |
-
|
570 |
-
Args:
|
571 |
-
query: Search query string
|
572 |
-
|
573 |
-
Returns:
|
574 |
-
Tuple of (bm25_weight, semantic_weight)
|
575 |
-
"""
|
576 |
-
analysis = self.analyze_query(query)
|
577 |
-
|
578 |
-
# Base weights
|
579 |
-
bm25_weight = 0.4
|
580 |
-
semantic_weight = 0.6
|
581 |
-
|
582 |
-
# Adjust weights based on query characteristics
|
583 |
-
if analysis['word_count'] <= 2:
|
584 |
-
# Short queries: favor keyword matching
|
585 |
-
bm25_weight = 0.6
|
586 |
-
semantic_weight = 0.4
|
587 |
-
elif analysis['word_count'] >= 6:
|
588 |
-
# Long queries: favor semantic understanding
|
589 |
-
bm25_weight = 0.3
|
590 |
-
semantic_weight = 0.7
|
591 |
-
|
592 |
-
if analysis['has_entities']:
|
593 |
-
# Queries with named entities: increase keyword importance
|
594 |
-
bm25_weight += 0.1
|
595 |
-
semantic_weight -= 0.1
|
596 |
-
|
597 |
-
if analysis['is_question']:
|
598 |
-
# Questions: favor semantic understanding
|
599 |
-
bm25_weight -= 0.1
|
600 |
-
semantic_weight += 0.1
|
601 |
-
|
602 |
-
# Normalize weights to ensure they sum to 1
|
603 |
-
total = bm25_weight + semantic_weight
|
604 |
-
return bm25_weight/total, semantic_weight/total
|
605 |
-
|
606 |
-
def calculate_relevance_score(self, doc: Dict, query: str, similarity_model) -> float:
|
607 |
-
"""
|
608 |
-
Calculate comprehensive relevance score for a document
|
609 |
-
|
610 |
-
Args:
|
611 |
-
doc: Document dictionary with title and content
|
612 |
-
query: Search query string
|
613 |
-
similarity_model: Model for computing semantic similarity
|
614 |
-
|
615 |
-
Returns:
|
616 |
-
Float representing document relevance score
|
617 |
-
"""
|
618 |
-
# 1. Title relevance (30%)
|
619 |
-
title_embedding = similarity_model.encode(doc['title'], convert_to_tensor=True)
|
620 |
-
query_embedding = similarity_model.encode(query, convert_to_tensor=True)
|
621 |
-
title_similarity = torch.cosine_similarity(title_embedding, query_embedding, dim=0).item()
|
622 |
-
|
623 |
-
# 2. Content relevance (40%)
|
624 |
-
# Use first 512 tokens of content to avoid memory issues
|
625 |
-
content_preview = ' '.join(doc['content'].split()[:512])
|
626 |
-
content_embedding = similarity_model.encode(content_preview, convert_to_tensor=True)
|
627 |
-
content_similarity = torch.cosine_similarity(content_embedding, query_embedding, dim=0).item()
|
628 |
-
|
629 |
-
# 3. Query term presence (20%)
|
630 |
-
query_terms = set(query.lower().split())
|
631 |
-
title_terms = set(doc['title'].lower().split())
|
632 |
-
content_terms = set(content_preview.lower().split())
|
633 |
-
|
634 |
-
title_term_overlap = len(query_terms & title_terms) / len(query_terms)
|
635 |
-
content_term_overlap = len(query_terms & content_terms) / len(query_terms)
|
636 |
-
|
637 |
-
# 4. Document quality indicators (10%)
|
638 |
-
quality_score = self.assess_document_quality(doc)
|
639 |
-
|
640 |
-
# Combine scores with weights
|
641 |
-
final_score = (
|
642 |
-
title_similarity * 0.3 +
|
643 |
-
content_similarity * 0.4 +
|
644 |
-
((title_term_overlap + content_term_overlap) / 2) * 0.2 +
|
645 |
-
quality_score * 0.1
|
646 |
-
)
|
647 |
-
|
648 |
-
return final_score
|
649 |
-
|
650 |
-
def assess_document_quality(self, doc: Dict) -> float:
|
651 |
-
"""
|
652 |
-
Assess document quality based on various metrics
|
653 |
-
|
654 |
-
Args:
|
655 |
-
doc: Document dictionary
|
656 |
-
|
657 |
-
Returns:
|
658 |
-
Float representing document quality score
|
659 |
-
"""
|
660 |
-
score = 0.0
|
661 |
-
|
662 |
-
# 1. Length score (longer documents often have more information)
|
663 |
-
content_length = len(doc['content'].split())
|
664 |
-
length_score = min(content_length / 1000, 1.0) # Cap at 1000 words
|
665 |
-
|
666 |
-
# 2. Text structure score
|
667 |
-
has_paragraphs = doc['content'].count('\n\n') > 0
|
668 |
-
has_sections = bool(re.findall(r'\n[A-Z][^.!?]*[:]\n', doc['content']))
|
669 |
-
|
670 |
-
# 3. Writing quality score (using basic metrics)
|
671 |
-
blob = TextBlob(doc['content'])
|
672 |
-
sentences = blob.sentences
|
673 |
-
avg_sentence_length = sum(len(str(s).split()) for s in sentences) / len(sentences) if sentences else 0
|
674 |
-
sentence_score = 1.0 if 10 <= avg_sentence_length <= 25 else 0.5
|
675 |
-
|
676 |
-
# Combine quality metrics
|
677 |
-
score = (
|
678 |
-
length_score * 0.4 +
|
679 |
-
(has_paragraphs * 0.2 + has_sections * 0.2) +
|
680 |
-
sentence_score * 0.2
|
681 |
-
)
|
682 |
-
|
683 |
-
return score
|
684 |
-
|
685 |
# Now modify the rerank_documents_with_priority function to include BM25 ranking
|
686 |
-
def
|
687 |
-
|
688 |
-
"""
|
689 |
-
Rerank documents using improved scoring system
|
690 |
-
|
691 |
-
Args:
|
692 |
-
query: Search query string
|
693 |
-
documents: List of document dictionaries
|
694 |
-
similarity_model: Model for computing semantic similarity
|
695 |
-
max_results: Maximum number of results to return
|
696 |
-
|
697 |
-
Returns:
|
698 |
-
List of reranked documents
|
699 |
-
"""
|
700 |
-
ranker = ImprovedRanking()
|
701 |
-
|
702 |
try:
|
703 |
if not documents:
|
|
|
704 |
return documents
|
705 |
|
706 |
-
#
|
707 |
-
bm25_weight, semantic_weight = ranker.get_adaptive_weights(query)
|
708 |
-
|
709 |
-
# Prepare documents for BM25
|
710 |
doc_texts, original_docs = prepare_documents_for_bm25(documents)
|
711 |
|
712 |
-
# Initialize and fit BM25
|
713 |
bm25 = BM25()
|
714 |
bm25.fit(doc_texts)
|
715 |
|
716 |
-
# Get BM25 scores
|
717 |
bm25_scores = bm25.get_scores(query)
|
718 |
|
719 |
-
#
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
]
|
724 |
|
725 |
-
#
|
726 |
bm25_scores_norm = (bm25_scores - np.min(bm25_scores)) / (np.max(bm25_scores) - np.min(bm25_scores))
|
727 |
-
|
728 |
|
729 |
-
# Combine scores
|
730 |
-
|
731 |
-
semantic_weight * relevance_scores_norm)
|
732 |
|
733 |
-
# Create scored documents
|
734 |
-
scored_documents = list(zip(documents,
|
735 |
|
736 |
-
# Sort by
|
737 |
scored_documents.sort(key=lambda x: x[1], reverse=True)
|
738 |
|
739 |
-
#
|
740 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
741 |
|
742 |
except Exception as e:
|
743 |
-
logger.error(f"Error during
|
744 |
-
return documents[:max_results]
|
745 |
|
746 |
def compute_similarity(text1, text2):
|
747 |
# Encode the texts
|
@@ -917,9 +778,6 @@ def search_and_scrape(
|
|
917 |
use_pydf2: bool = True
|
918 |
):
|
919 |
try:
|
920 |
-
# Initialize ImprovedRanking instead of DocumentRanker
|
921 |
-
document_ranker = ImprovedRanking()
|
922 |
-
|
923 |
# Step 1: Rephrase the Query
|
924 |
rephrased_query = rephrase_query(chat_history, query, temperature=llm_temperature)
|
925 |
logger.info(f"Rephrased Query: {rephrased_query}")
|
@@ -928,7 +786,8 @@ def search_and_scrape(
|
|
928 |
logger.info("No need to perform search based on the rephrased query.")
|
929 |
return "No search needed for the provided input."
|
930 |
|
931 |
-
#
|
|
|
932 |
params = {
|
933 |
'q': rephrased_query,
|
934 |
'format': 'json',
|
@@ -941,11 +800,13 @@ def search_and_scrape(
|
|
941 |
|
942 |
# Remove empty parameters
|
943 |
params = {k: v for k, v in params.items() if v != ""}
|
944 |
-
|
|
|
945 |
if 'engines' not in params:
|
946 |
-
params['engines'] = 'google'
|
947 |
logger.info("No engines specified. Defaulting to 'google'.")
|
948 |
|
|
|
949 |
headers = {
|
950 |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
|
951 |
'Accept': 'application/json, text/javascript, */*; q=0.01',
|
@@ -961,16 +822,18 @@ def search_and_scrape(
|
|
961 |
|
962 |
scraped_content = []
|
963 |
page = 1
|
964 |
-
|
965 |
-
# Content scraping loop remains mostly the same, but add quality assessment
|
966 |
while len(scraped_content) < num_results:
|
|
|
967 |
params['pageno'] = page
|
968 |
-
|
|
|
|
|
|
|
|
|
969 |
try:
|
970 |
-
session = requests_retry_session()
|
971 |
if method.upper() == "GET":
|
972 |
response = session.get(SEARXNG_URL, params=params, headers=headers, timeout=10, verify=certifi.where())
|
973 |
-
else:
|
974 |
response = session.post(SEARXNG_URL, data=params, headers=headers, timeout=10, verify=certifi.where())
|
975 |
|
976 |
response.raise_for_status()
|
@@ -979,8 +842,9 @@ def search_and_scrape(
|
|
979 |
return f"An error occurred during the search request: {e}"
|
980 |
|
981 |
search_results = response.json()
|
|
|
|
|
982 |
results = search_results.get('results', [])
|
983 |
-
|
984 |
if not results:
|
985 |
logger.warning(f"No more results returned from SearXNG on page {page}.")
|
986 |
break
|
@@ -988,40 +852,33 @@ def search_and_scrape(
|
|
988 |
for result in results:
|
989 |
if len(scraped_content) >= num_results:
|
990 |
break
|
991 |
-
|
992 |
url = result.get('url', '')
|
993 |
title = result.get('title', 'No title')
|
994 |
-
|
995 |
if not is_valid_url(url):
|
996 |
logger.warning(f"Invalid URL: {url}")
|
997 |
continue
|
998 |
-
|
999 |
try:
|
1000 |
logger.info(f"Processing content from: {url}")
|
|
|
1001 |
content = scrape_full_content(url, max_chars, timeout, use_pydf2)
|
1002 |
|
1003 |
-
if content is None:
|
1004 |
continue
|
1005 |
|
1006 |
if not content:
|
1007 |
logger.warning(f"Failed to scrape content from {url}")
|
1008 |
continue
|
1009 |
|
1010 |
-
# Add initial quality assessment
|
1011 |
-
doc_quality = document_ranker.assess_document_quality({
|
1012 |
-
"title": title,
|
1013 |
-
"content": content
|
1014 |
-
})
|
1015 |
-
|
1016 |
scraped_content.append({
|
1017 |
"title": title,
|
1018 |
"url": url,
|
1019 |
"content": content,
|
1020 |
-
"scraper": "pdf" if url.lower().endswith('.pdf') else "newspaper"
|
1021 |
-
"quality_score": doc_quality
|
1022 |
})
|
1023 |
-
logger.info(f"Successfully scraped content from {url}.
|
1024 |
-
|
1025 |
except requests.exceptions.RequestException as e:
|
1026 |
logger.error(f"Error scraping {url}: {e}")
|
1027 |
except Exception as e:
|
@@ -1033,108 +890,48 @@ def search_and_scrape(
|
|
1033 |
logger.warning("No content scraped from search results.")
|
1034 |
return "No content could be scraped from the search results."
|
1035 |
|
1036 |
-
|
|
|
|
|
1037 |
relevant_documents = []
|
1038 |
-
unique_summaries =
|
1039 |
-
|
1040 |
for doc in scraped_content:
|
1041 |
assessment = assess_relevance_and_summarize(client, rephrased_query, doc, temperature=llm_temperature)
|
1042 |
relevance, summary = assessment.split('\n', 1)
|
1043 |
-
|
1044 |
if relevance.strip().lower() == "relevant: yes":
|
1045 |
summary_text = summary.replace("Summary: ", "").strip()
|
1046 |
|
1047 |
-
if is_content_unique(summary_text, unique_summaries
|
1048 |
-
# Calculate comprehensive relevance score using new method
|
1049 |
-
relevance_score = document_ranker.calculate_relevance_score(
|
1050 |
-
{
|
1051 |
-
"title": doc['title'],
|
1052 |
-
"content": doc['content'],
|
1053 |
-
"summary": summary_text
|
1054 |
-
},
|
1055 |
-
rephrased_query,
|
1056 |
-
similarity_model
|
1057 |
-
)
|
1058 |
-
|
1059 |
relevant_documents.append({
|
1060 |
"title": doc['title'],
|
1061 |
"url": doc['url'],
|
1062 |
-
"content": doc['content'],
|
1063 |
"summary": summary_text,
|
1064 |
-
"scraper": doc['scraper']
|
1065 |
-
"relevance_score": relevance_score,
|
1066 |
-
"quality_score": doc['quality_score']
|
1067 |
})
|
1068 |
-
unique_summaries.
|
|
|
|
|
1069 |
|
1070 |
if not relevant_documents:
|
1071 |
logger.warning("No relevant and unique documents found.")
|
1072 |
-
return "No relevant and unique
|
1073 |
-
|
1074 |
-
# Enhanced reranking using improved weights and BM25
|
1075 |
-
try:
|
1076 |
-
# Get query-adaptive weights
|
1077 |
-
bm25_weight, semantic_weight = document_ranker.get_adaptive_weights(rephrased_query)
|
1078 |
-
logger.info(f"Using adaptive weights - BM25: {bm25_weight}, Semantic: {semantic_weight}")
|
1079 |
-
|
1080 |
-
# Prepare documents for BM25
|
1081 |
-
doc_texts = [f"{doc['title']} {doc['content']}" for doc in relevant_documents]
|
1082 |
-
|
1083 |
-
# Initialize and fit BM25
|
1084 |
-
bm25 = BM25()
|
1085 |
-
bm25.fit(doc_texts)
|
1086 |
-
|
1087 |
-
# Get BM25 scores
|
1088 |
-
bm25_scores = bm25.get_scores(rephrased_query)
|
1089 |
-
|
1090 |
-
# Calculate semantic scores using title and content
|
1091 |
-
query_embedding = similarity_model.encode(rephrased_query, convert_to_tensor=True)
|
1092 |
-
doc_embeddings = similarity_model.encode(
|
1093 |
-
[f"{doc['title']} {doc['summary']}" for doc in relevant_documents],
|
1094 |
-
convert_to_tensor=True
|
1095 |
-
)
|
1096 |
-
semantic_scores = util.cos_sim(query_embedding, doc_embeddings)[0]
|
1097 |
-
|
1098 |
-
# Get quality scores
|
1099 |
-
quality_scores = np.array([doc['quality_score'] for doc in relevant_documents])
|
1100 |
-
|
1101 |
-
# Normalize all scores
|
1102 |
-
bm25_scores_norm = normalize_scores(bm25_scores)
|
1103 |
-
semantic_scores_norm = normalize_scores(semantic_scores.numpy())
|
1104 |
-
quality_scores_norm = normalize_scores(quality_scores)
|
1105 |
-
relevance_scores = normalize_scores(
|
1106 |
-
np.array([doc['relevance_score'] for doc in relevant_documents])
|
1107 |
-
)
|
1108 |
-
|
1109 |
-
# Combine scores with weights
|
1110 |
-
final_scores = (
|
1111 |
-
bm25_weight * bm25_scores_norm +
|
1112 |
-
semantic_weight * semantic_scores_norm +
|
1113 |
-
0.15 * quality_scores_norm + # Add quality score weight
|
1114 |
-
0.15 * relevance_scores # Reduced from 0.2 to accommodate quality
|
1115 |
-
)
|
1116 |
-
|
1117 |
-
# Create scored documents
|
1118 |
-
scored_documents = list(zip(relevant_documents, final_scores))
|
1119 |
-
scored_documents.sort(key=lambda x: x[1], reverse=True)
|
1120 |
-
|
1121 |
-
# Take top results
|
1122 |
-
reranked_docs = [doc for doc, _ in scored_documents[:num_results]]
|
1123 |
-
|
1124 |
-
except Exception as e:
|
1125 |
-
logger.error(f"Error during document reranking: {e}")
|
1126 |
-
# Fallback to basic sorting by relevance and quality
|
1127 |
-
reranked_docs = sorted(
|
1128 |
-
relevant_documents,
|
1129 |
-
key=lambda x: (x['relevance_score'] + x['quality_score']) / 2,
|
1130 |
-
reverse=True
|
1131 |
-
)[:num_results]
|
1132 |
|
|
|
|
|
|
|
1133 |
if not reranked_docs:
|
1134 |
logger.warning("No documents remained after reranking.")
|
1135 |
-
return "No relevant
|
|
|
|
|
1136 |
|
1137 |
-
#
|
|
|
|
|
|
|
|
|
|
|
1138 |
llm_input = {
|
1139 |
"query": query,
|
1140 |
"documents": [
|
@@ -1142,13 +939,12 @@ def search_and_scrape(
|
|
1142 |
"title": doc['title'],
|
1143 |
"url": doc['url'],
|
1144 |
"summary": doc['summary'],
|
1145 |
-
"
|
1146 |
-
|
1147 |
-
} for doc in reranked_docs
|
1148 |
]
|
1149 |
}
|
1150 |
|
1151 |
-
# LLM Summarization
|
1152 |
llm_summary = llm_summarize(json.dumps(llm_input), model, temperature=llm_temperature)
|
1153 |
|
1154 |
return llm_summary
|
@@ -1157,12 +953,6 @@ def search_and_scrape(
|
|
1157 |
logger.error(f"Unexpected error in search_and_scrape: {e}")
|
1158 |
return f"An unexpected error occurred during the search and scrape process: {e}"
|
1159 |
|
1160 |
-
def normalize_scores(scores: np.ndarray) -> np.ndarray:
|
1161 |
-
"""Normalize scores to range [0, 1]"""
|
1162 |
-
if np.all(scores == scores[0]):
|
1163 |
-
return np.ones_like(scores)
|
1164 |
-
return (scores - np.min(scores)) / (np.max(scores) - np.min(scores))
|
1165 |
-
|
1166 |
# Helper function to get the appropriate client for each model
|
1167 |
def get_client_for_model(model: str) -> Any:
|
1168 |
if model == "huggingface":
|
@@ -1218,7 +1008,7 @@ iface = gr.ChatInterface(
|
|
1218 |
description="Ask Sentinel any question. It will search the web for recent information or use its knowledge base as appropriate.",
|
1219 |
theme=gr.Theme.from_hub("allenai/gradio-theme"),
|
1220 |
additional_inputs=[
|
1221 |
-
gr.Checkbox(label="Only do web search", value=
|
1222 |
gr.Slider(5, 20, value=3, step=1, label="Number of initial results"),
|
1223 |
gr.Slider(500, 10000, value=1500, step=100, label="Max characters to retrieve"),
|
1224 |
gr.Dropdown(["", "day", "week", "month", "year"], value="week", label="Time Range"),
|
@@ -1231,7 +1021,7 @@ iface = gr.ChatInterface(
|
|
1231 |
label="Engines"
|
1232 |
),
|
1233 |
gr.Slider(0, 2, value=2, step=1, label="Safe Search Level"),
|
1234 |
-
gr.Radio(["GET", "POST"], value="
|
1235 |
gr.Slider(0, 1, value=0.2, step=0.1, label="LLM Temperature"),
|
1236 |
gr.Dropdown(all_models, value=default_model, label="LLM Model"),
|
1237 |
gr.Checkbox(label="Use PyPDF2 for PDF scraping", value=True),
|
@@ -1250,4 +1040,4 @@ iface = gr.ChatInterface(
|
|
1250 |
|
1251 |
if __name__ == "__main__":
|
1252 |
logger.info("Starting the SearXNG Scraper for News using ChatInterface with Advanced Parameters")
|
1253 |
-
iface.launch(share=
|
|
|
39 |
import datetime
|
40 |
from abc import ABC, abstractmethod
|
41 |
from typing import List, Dict, Any
|
|
|
|
|
42 |
|
43 |
# Automatically get the current year
|
44 |
CURRENT_YEAR = datetime.datetime.now().year
|
|
|
84 |
all_models = ["huggingface", "groq", "mistral"] + custom_models
|
85 |
|
86 |
# Determine the default model
|
87 |
+
default_model = CUSTOM_LLM_DEFAULT_MODEL if CUSTOM_LLM_DEFAULT_MODEL in all_models else "groq"
|
88 |
|
89 |
logger.info(f"Default model selected: {default_model}")
|
90 |
|
|
|
534 |
doc_texts.append(doc_text)
|
535 |
return doc_texts, documents
|
536 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
537 |
# Now modify the rerank_documents_with_priority function to include BM25 ranking
|
538 |
+
def rerank_documents(query: str, documents: List[Dict],
|
539 |
+
similarity_threshold: float = 0.95, max_results: int = 5) -> List[Dict]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
540 |
try:
|
541 |
if not documents:
|
542 |
+
logger.warning("No documents to rerank.")
|
543 |
return documents
|
544 |
|
545 |
+
# Step 1: Prepare documents for BM25
|
|
|
|
|
|
|
546 |
doc_texts, original_docs = prepare_documents_for_bm25(documents)
|
547 |
|
548 |
+
# Step 2: Initialize and fit BM25
|
549 |
bm25 = BM25()
|
550 |
bm25.fit(doc_texts)
|
551 |
|
552 |
+
# Step 3: Get BM25 scores
|
553 |
bm25_scores = bm25.get_scores(query)
|
554 |
|
555 |
+
# Step 4: Get semantic similarity scores
|
556 |
+
query_embedding = similarity_model.encode(query, convert_to_tensor=True)
|
557 |
+
doc_summaries = [doc['summary'] for doc in documents]
|
558 |
+
doc_embeddings = similarity_model.encode(doc_summaries, convert_to_tensor=True)
|
559 |
+
semantic_scores = util.cos_sim(query_embedding, doc_embeddings)[0]
|
560 |
|
561 |
+
# Step 5: Combine scores (normalize first)
|
562 |
bm25_scores_norm = (bm25_scores - np.min(bm25_scores)) / (np.max(bm25_scores) - np.min(bm25_scores))
|
563 |
+
semantic_scores_norm = (semantic_scores - torch.min(semantic_scores)) / (torch.max(semantic_scores) - torch.min(semantic_scores))
|
564 |
|
565 |
+
# Combine scores with weights (0.4 for BM25, 0.6 for semantic similarity)
|
566 |
+
combined_scores = 0.4 * bm25_scores_norm + 0.6 * semantic_scores_norm.numpy()
|
|
|
567 |
|
568 |
+
# Create scored documents with combined scores
|
569 |
+
scored_documents = list(zip(documents, combined_scores))
|
570 |
|
571 |
+
# Sort by combined score (descending)
|
572 |
scored_documents.sort(key=lambda x: x[1], reverse=True)
|
573 |
|
574 |
+
# Filter similar documents
|
575 |
+
filtered_docs = []
|
576 |
+
added_contents = []
|
577 |
+
|
578 |
+
for doc, score in scored_documents:
|
579 |
+
if score < 0.3: # Minimum relevance threshold
|
580 |
+
continue
|
581 |
+
|
582 |
+
# Check similarity with already selected documents
|
583 |
+
doc_embedding = similarity_model.encode(doc['summary'], convert_to_tensor=True)
|
584 |
+
is_similar = False
|
585 |
+
|
586 |
+
for content in added_contents:
|
587 |
+
content_embedding = similarity_model.encode(content, convert_to_tensor=True)
|
588 |
+
similarity = util.pytorch_cos_sim(doc_embedding, content_embedding)
|
589 |
+
if similarity > similarity_threshold:
|
590 |
+
is_similar = True
|
591 |
+
break
|
592 |
+
|
593 |
+
if not is_similar:
|
594 |
+
filtered_docs.append(doc)
|
595 |
+
added_contents.append(doc['summary'])
|
596 |
+
|
597 |
+
if len(filtered_docs) >= max_results:
|
598 |
+
break
|
599 |
+
|
600 |
+
logger.info(f"Reranked and filtered to {len(filtered_docs)} unique documents using BM25 and semantic similarity.")
|
601 |
+
return filtered_docs
|
602 |
|
603 |
except Exception as e:
|
604 |
+
logger.error(f"Error during reranking documents: {e}")
|
605 |
+
return documents[:max_results] # Fallback to first max_results documents if reranking fails
|
606 |
|
607 |
def compute_similarity(text1, text2):
|
608 |
# Encode the texts
|
|
|
778 |
use_pydf2: bool = True
|
779 |
):
|
780 |
try:
|
|
|
|
|
|
|
781 |
# Step 1: Rephrase the Query
|
782 |
rephrased_query = rephrase_query(chat_history, query, temperature=llm_temperature)
|
783 |
logger.info(f"Rephrased Query: {rephrased_query}")
|
|
|
786 |
logger.info("No need to perform search based on the rephrased query.")
|
787 |
return "No search needed for the provided input."
|
788 |
|
789 |
+
# Step 2: Perform search
|
790 |
+
# Search query parameters
|
791 |
params = {
|
792 |
'q': rephrased_query,
|
793 |
'format': 'json',
|
|
|
800 |
|
801 |
# Remove empty parameters
|
802 |
params = {k: v for k, v in params.items() if v != ""}
|
803 |
+
|
804 |
+
# If no engines are specified, set default engines
|
805 |
if 'engines' not in params:
|
806 |
+
params['engines'] = 'google' # Default to 'google' or any preferred engine
|
807 |
logger.info("No engines specified. Defaulting to 'google'.")
|
808 |
|
809 |
+
# Headers for SearXNG request
|
810 |
headers = {
|
811 |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
|
812 |
'Accept': 'application/json, text/javascript, */*; q=0.01',
|
|
|
822 |
|
823 |
scraped_content = []
|
824 |
page = 1
|
|
|
|
|
825 |
while len(scraped_content) < num_results:
|
826 |
+
# Update params with current page
|
827 |
params['pageno'] = page
|
828 |
+
|
829 |
+
# Send request to SearXNG
|
830 |
+
logger.info(f"Sending request to SearXNG for query: {rephrased_query} (Page {page})")
|
831 |
+
session = requests_retry_session()
|
832 |
+
|
833 |
try:
|
|
|
834 |
if method.upper() == "GET":
|
835 |
response = session.get(SEARXNG_URL, params=params, headers=headers, timeout=10, verify=certifi.where())
|
836 |
+
else: # POST
|
837 |
response = session.post(SEARXNG_URL, data=params, headers=headers, timeout=10, verify=certifi.where())
|
838 |
|
839 |
response.raise_for_status()
|
|
|
842 |
return f"An error occurred during the search request: {e}"
|
843 |
|
844 |
search_results = response.json()
|
845 |
+
logger.debug(f"SearXNG Response: {search_results}")
|
846 |
+
|
847 |
results = search_results.get('results', [])
|
|
|
848 |
if not results:
|
849 |
logger.warning(f"No more results returned from SearXNG on page {page}.")
|
850 |
break
|
|
|
852 |
for result in results:
|
853 |
if len(scraped_content) >= num_results:
|
854 |
break
|
855 |
+
|
856 |
url = result.get('url', '')
|
857 |
title = result.get('title', 'No title')
|
858 |
+
|
859 |
if not is_valid_url(url):
|
860 |
logger.warning(f"Invalid URL: {url}")
|
861 |
continue
|
862 |
+
|
863 |
try:
|
864 |
logger.info(f"Processing content from: {url}")
|
865 |
+
|
866 |
content = scrape_full_content(url, max_chars, timeout, use_pydf2)
|
867 |
|
868 |
+
if content is None: # This means it's a PDF and use_pydf2 is False
|
869 |
continue
|
870 |
|
871 |
if not content:
|
872 |
logger.warning(f"Failed to scrape content from {url}")
|
873 |
continue
|
874 |
|
|
|
|
|
|
|
|
|
|
|
|
|
875 |
scraped_content.append({
|
876 |
"title": title,
|
877 |
"url": url,
|
878 |
"content": content,
|
879 |
+
"scraper": "pdf" if url.lower().endswith('.pdf') else "newspaper"
|
|
|
880 |
})
|
881 |
+
logger.info(f"Successfully scraped content from {url}. Total scraped: {len(scraped_content)}")
|
|
|
882 |
except requests.exceptions.RequestException as e:
|
883 |
logger.error(f"Error scraping {url}: {e}")
|
884 |
except Exception as e:
|
|
|
890 |
logger.warning("No content scraped from search results.")
|
891 |
return "No content could be scraped from the search results."
|
892 |
|
893 |
+
logger.info(f"Successfully scraped {len(scraped_content)} documents.")
|
894 |
+
|
895 |
+
# Step 4: Assess relevance, summarize, and check for uniqueness
|
896 |
relevant_documents = []
|
897 |
+
unique_summaries = []
|
|
|
898 |
for doc in scraped_content:
|
899 |
assessment = assess_relevance_and_summarize(client, rephrased_query, doc, temperature=llm_temperature)
|
900 |
relevance, summary = assessment.split('\n', 1)
|
901 |
+
|
902 |
if relevance.strip().lower() == "relevant: yes":
|
903 |
summary_text = summary.replace("Summary: ", "").strip()
|
904 |
|
905 |
+
if is_content_unique(summary_text, unique_summaries):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
906 |
relevant_documents.append({
|
907 |
"title": doc['title'],
|
908 |
"url": doc['url'],
|
|
|
909 |
"summary": summary_text,
|
910 |
+
"scraper": doc['scraper']
|
|
|
|
|
911 |
})
|
912 |
+
unique_summaries.append(summary_text)
|
913 |
+
else:
|
914 |
+
logger.info(f"Skipping similar content: {doc['title']}")
|
915 |
|
916 |
if not relevant_documents:
|
917 |
logger.warning("No relevant and unique documents found.")
|
918 |
+
return "No relevant and unique news found for the given query."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
919 |
|
920 |
+
# Step 5: Rerank documents based on similarity to query
|
921 |
+
reranked_docs = rerank_documents(rephrased_query, relevant_documents, similarity_threshold=0.95, max_results=num_results)
|
922 |
+
|
923 |
if not reranked_docs:
|
924 |
logger.warning("No documents remained after reranking.")
|
925 |
+
return "No relevant news found after filtering and ranking."
|
926 |
+
|
927 |
+
logger.info(f"Reranked and filtered to top {len(reranked_docs)} unique, related documents.")
|
928 |
|
929 |
+
# Step 5: Scrape full content for top documents (up to num_results)
|
930 |
+
for doc in reranked_docs[:num_results]:
|
931 |
+
full_content = scrape_full_content(doc['url'], max_chars)
|
932 |
+
doc['full_content'] = full_content
|
933 |
+
|
934 |
+
# Prepare JSON for LLM
|
935 |
llm_input = {
|
936 |
"query": query,
|
937 |
"documents": [
|
|
|
939 |
"title": doc['title'],
|
940 |
"url": doc['url'],
|
941 |
"summary": doc['summary'],
|
942 |
+
"full_content": doc['full_content']
|
943 |
+
} for doc in reranked_docs[:num_results]
|
|
|
944 |
]
|
945 |
}
|
946 |
|
947 |
+
# Step 6: LLM Summarization
|
948 |
llm_summary = llm_summarize(json.dumps(llm_input), model, temperature=llm_temperature)
|
949 |
|
950 |
return llm_summary
|
|
|
953 |
logger.error(f"Unexpected error in search_and_scrape: {e}")
|
954 |
return f"An unexpected error occurred during the search and scrape process: {e}"
|
955 |
|
|
|
|
|
|
|
|
|
|
|
|
|
956 |
# Helper function to get the appropriate client for each model
|
957 |
def get_client_for_model(model: str) -> Any:
|
958 |
if model == "huggingface":
|
|
|
1008 |
description="Ask Sentinel any question. It will search the web for recent information or use its knowledge base as appropriate.",
|
1009 |
theme=gr.Theme.from_hub("allenai/gradio-theme"),
|
1010 |
additional_inputs=[
|
1011 |
+
gr.Checkbox(label="Only do web search", value=True), # Add this line
|
1012 |
gr.Slider(5, 20, value=3, step=1, label="Number of initial results"),
|
1013 |
gr.Slider(500, 10000, value=1500, step=100, label="Max characters to retrieve"),
|
1014 |
gr.Dropdown(["", "day", "week", "month", "year"], value="week", label="Time Range"),
|
|
|
1021 |
label="Engines"
|
1022 |
),
|
1023 |
gr.Slider(0, 2, value=2, step=1, label="Safe Search Level"),
|
1024 |
+
gr.Radio(["GET", "POST"], value="GET", label="HTTP Method"),
|
1025 |
gr.Slider(0, 1, value=0.2, step=0.1, label="LLM Temperature"),
|
1026 |
gr.Dropdown(all_models, value=default_model, label="LLM Model"),
|
1027 |
gr.Checkbox(label="Use PyPDF2 for PDF scraping", value=True),
|
|
|
1040 |
|
1041 |
if __name__ == "__main__":
|
1042 |
logger.info("Starting the SearXNG Scraper for News using ChatInterface with Advanced Parameters")
|
1043 |
+
iface.launch(share=True)
|