Update app.py
Browse files
app.py
CHANGED
|
@@ -39,8 +39,6 @@ from typing import List, Dict, Tuple
|
|
| 39 |
import datetime
|
| 40 |
from abc import ABC, abstractmethod
|
| 41 |
from typing import List, Dict, Any
|
| 42 |
-
import spacy
|
| 43 |
-
from textblob import TextBlob
|
| 44 |
|
| 45 |
# Automatically get the current year
|
| 46 |
CURRENT_YEAR = datetime.datetime.now().year
|
|
@@ -86,7 +84,7 @@ custom_models = fetch_custom_models()
|
|
| 86 |
all_models = ["huggingface", "groq", "mistral"] + custom_models
|
| 87 |
|
| 88 |
# Determine the default model
|
| 89 |
-
default_model = CUSTOM_LLM_DEFAULT_MODEL if CUSTOM_LLM_DEFAULT_MODEL in all_models else "
|
| 90 |
|
| 91 |
logger.info(f"Default model selected: {default_model}")
|
| 92 |
|
|
@@ -536,212 +534,75 @@ def prepare_documents_for_bm25(documents: List[Dict]) -> Tuple[List[str], List[D
|
|
| 536 |
doc_texts.append(doc_text)
|
| 537 |
return doc_texts, documents
|
| 538 |
|
| 539 |
-
|
| 540 |
-
class ImprovedRanking:
|
| 541 |
-
def __init__(self):
|
| 542 |
-
# Load spacy for text analysis
|
| 543 |
-
self.nlp = spacy.load('en_core_web_sm')
|
| 544 |
-
|
| 545 |
-
def analyze_query(self, query: str) -> Dict:
|
| 546 |
-
"""
|
| 547 |
-
Analyze query to determine appropriate weights
|
| 548 |
-
|
| 549 |
-
Args:
|
| 550 |
-
query: Search query string
|
| 551 |
-
|
| 552 |
-
Returns:
|
| 553 |
-
Dictionary with query analysis results
|
| 554 |
-
"""
|
| 555 |
-
doc = self.nlp(query)
|
| 556 |
-
|
| 557 |
-
analysis = {
|
| 558 |
-
'word_count': len(query.split()),
|
| 559 |
-
'has_entities': bool(doc.ents),
|
| 560 |
-
'is_question': any(token.tag_ == 'WP' or token.tag_ == 'WRB' for token in doc),
|
| 561 |
-
'sentiment': TextBlob(query).sentiment.polarity
|
| 562 |
-
}
|
| 563 |
-
|
| 564 |
-
return analysis
|
| 565 |
-
|
| 566 |
-
def get_adaptive_weights(self, query: str) -> Tuple[float, float]:
|
| 567 |
-
"""
|
| 568 |
-
Calculate adaptive weights based on query characteristics
|
| 569 |
-
|
| 570 |
-
Args:
|
| 571 |
-
query: Search query string
|
| 572 |
-
|
| 573 |
-
Returns:
|
| 574 |
-
Tuple of (bm25_weight, semantic_weight)
|
| 575 |
-
"""
|
| 576 |
-
analysis = self.analyze_query(query)
|
| 577 |
-
|
| 578 |
-
# Base weights
|
| 579 |
-
bm25_weight = 0.4
|
| 580 |
-
semantic_weight = 0.6
|
| 581 |
-
|
| 582 |
-
# Adjust weights based on query characteristics
|
| 583 |
-
if analysis['word_count'] <= 2:
|
| 584 |
-
# Short queries: favor keyword matching
|
| 585 |
-
bm25_weight = 0.6
|
| 586 |
-
semantic_weight = 0.4
|
| 587 |
-
elif analysis['word_count'] >= 6:
|
| 588 |
-
# Long queries: favor semantic understanding
|
| 589 |
-
bm25_weight = 0.3
|
| 590 |
-
semantic_weight = 0.7
|
| 591 |
-
|
| 592 |
-
if analysis['has_entities']:
|
| 593 |
-
# Queries with named entities: increase keyword importance
|
| 594 |
-
bm25_weight += 0.1
|
| 595 |
-
semantic_weight -= 0.1
|
| 596 |
-
|
| 597 |
-
if analysis['is_question']:
|
| 598 |
-
# Questions: favor semantic understanding
|
| 599 |
-
bm25_weight -= 0.1
|
| 600 |
-
semantic_weight += 0.1
|
| 601 |
-
|
| 602 |
-
# Normalize weights to ensure they sum to 1
|
| 603 |
-
total = bm25_weight + semantic_weight
|
| 604 |
-
return bm25_weight/total, semantic_weight/total
|
| 605 |
-
|
| 606 |
-
def calculate_relevance_score(self, doc: Dict, query: str, similarity_model) -> float:
|
| 607 |
-
"""
|
| 608 |
-
Calculate comprehensive relevance score for a document
|
| 609 |
-
|
| 610 |
-
Args:
|
| 611 |
-
doc: Document dictionary with title and content
|
| 612 |
-
query: Search query string
|
| 613 |
-
similarity_model: Model for computing semantic similarity
|
| 614 |
-
|
| 615 |
-
Returns:
|
| 616 |
-
Float representing document relevance score
|
| 617 |
-
"""
|
| 618 |
-
# 1. Title relevance (30%)
|
| 619 |
-
title_embedding = similarity_model.encode(doc['title'], convert_to_tensor=True)
|
| 620 |
-
query_embedding = similarity_model.encode(query, convert_to_tensor=True)
|
| 621 |
-
title_similarity = torch.cosine_similarity(title_embedding, query_embedding, dim=0).item()
|
| 622 |
-
|
| 623 |
-
# 2. Content relevance (40%)
|
| 624 |
-
# Use first 512 tokens of content to avoid memory issues
|
| 625 |
-
content_preview = ' '.join(doc['content'].split()[:512])
|
| 626 |
-
content_embedding = similarity_model.encode(content_preview, convert_to_tensor=True)
|
| 627 |
-
content_similarity = torch.cosine_similarity(content_embedding, query_embedding, dim=0).item()
|
| 628 |
-
|
| 629 |
-
# 3. Query term presence (20%)
|
| 630 |
-
query_terms = set(query.lower().split())
|
| 631 |
-
title_terms = set(doc['title'].lower().split())
|
| 632 |
-
content_terms = set(content_preview.lower().split())
|
| 633 |
-
|
| 634 |
-
title_term_overlap = len(query_terms & title_terms) / len(query_terms)
|
| 635 |
-
content_term_overlap = len(query_terms & content_terms) / len(query_terms)
|
| 636 |
-
|
| 637 |
-
# 4. Document quality indicators (10%)
|
| 638 |
-
quality_score = self.assess_document_quality(doc)
|
| 639 |
-
|
| 640 |
-
# Combine scores with weights
|
| 641 |
-
final_score = (
|
| 642 |
-
title_similarity * 0.3 +
|
| 643 |
-
content_similarity * 0.4 +
|
| 644 |
-
((title_term_overlap + content_term_overlap) / 2) * 0.2 +
|
| 645 |
-
quality_score * 0.1
|
| 646 |
-
)
|
| 647 |
-
|
| 648 |
-
return final_score
|
| 649 |
-
|
| 650 |
-
def assess_document_quality(self, doc: Dict) -> float:
|
| 651 |
-
"""
|
| 652 |
-
Assess document quality based on various metrics
|
| 653 |
-
|
| 654 |
-
Args:
|
| 655 |
-
doc: Document dictionary
|
| 656 |
-
|
| 657 |
-
Returns:
|
| 658 |
-
Float representing document quality score
|
| 659 |
-
"""
|
| 660 |
-
score = 0.0
|
| 661 |
-
|
| 662 |
-
# 1. Length score (longer documents often have more information)
|
| 663 |
-
content_length = len(doc['content'].split())
|
| 664 |
-
length_score = min(content_length / 1000, 1.0) # Cap at 1000 words
|
| 665 |
-
|
| 666 |
-
# 2. Text structure score
|
| 667 |
-
has_paragraphs = doc['content'].count('\n\n') > 0
|
| 668 |
-
has_sections = bool(re.findall(r'\n[A-Z][^.!?]*[:]\n', doc['content']))
|
| 669 |
-
|
| 670 |
-
# 3. Writing quality score (using basic metrics)
|
| 671 |
-
blob = TextBlob(doc['content'])
|
| 672 |
-
sentences = blob.sentences
|
| 673 |
-
avg_sentence_length = sum(len(str(s).split()) for s in sentences) / len(sentences) if sentences else 0
|
| 674 |
-
sentence_score = 1.0 if 10 <= avg_sentence_length <= 25 else 0.5
|
| 675 |
-
|
| 676 |
-
# Combine quality metrics
|
| 677 |
-
score = (
|
| 678 |
-
length_score * 0.4 +
|
| 679 |
-
(has_paragraphs * 0.2 + has_sections * 0.2) +
|
| 680 |
-
sentence_score * 0.2
|
| 681 |
-
)
|
| 682 |
-
|
| 683 |
-
return score
|
| 684 |
-
|
| 685 |
# Now modify the rerank_documents_with_priority function to include BM25 ranking
|
| 686 |
-
def
|
| 687 |
-
|
| 688 |
-
"""
|
| 689 |
-
Rerank documents using improved scoring system
|
| 690 |
-
|
| 691 |
-
Args:
|
| 692 |
-
query: Search query string
|
| 693 |
-
documents: List of document dictionaries
|
| 694 |
-
similarity_model: Model for computing semantic similarity
|
| 695 |
-
max_results: Maximum number of results to return
|
| 696 |
-
|
| 697 |
-
Returns:
|
| 698 |
-
List of reranked documents
|
| 699 |
-
"""
|
| 700 |
-
ranker = ImprovedRanking()
|
| 701 |
-
|
| 702 |
try:
|
| 703 |
if not documents:
|
|
|
|
| 704 |
return documents
|
| 705 |
|
| 706 |
-
#
|
| 707 |
-
bm25_weight, semantic_weight = ranker.get_adaptive_weights(query)
|
| 708 |
-
|
| 709 |
-
# Prepare documents for BM25
|
| 710 |
doc_texts, original_docs = prepare_documents_for_bm25(documents)
|
| 711 |
|
| 712 |
-
# Initialize and fit BM25
|
| 713 |
bm25 = BM25()
|
| 714 |
bm25.fit(doc_texts)
|
| 715 |
|
| 716 |
-
# Get BM25 scores
|
| 717 |
bm25_scores = bm25.get_scores(query)
|
| 718 |
|
| 719 |
-
#
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
]
|
| 724 |
|
| 725 |
-
#
|
| 726 |
bm25_scores_norm = (bm25_scores - np.min(bm25_scores)) / (np.max(bm25_scores) - np.min(bm25_scores))
|
| 727 |
-
|
| 728 |
|
| 729 |
-
# Combine scores
|
| 730 |
-
|
| 731 |
-
semantic_weight * relevance_scores_norm)
|
| 732 |
|
| 733 |
-
# Create scored documents
|
| 734 |
-
scored_documents = list(zip(documents,
|
| 735 |
|
| 736 |
-
# Sort by
|
| 737 |
scored_documents.sort(key=lambda x: x[1], reverse=True)
|
| 738 |
|
| 739 |
-
#
|
| 740 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 741 |
|
| 742 |
except Exception as e:
|
| 743 |
-
logger.error(f"Error during
|
| 744 |
-
return documents[:max_results]
|
| 745 |
|
| 746 |
def compute_similarity(text1, text2):
|
| 747 |
# Encode the texts
|
|
@@ -917,9 +778,6 @@ def search_and_scrape(
|
|
| 917 |
use_pydf2: bool = True
|
| 918 |
):
|
| 919 |
try:
|
| 920 |
-
# Initialize ImprovedRanking instead of DocumentRanker
|
| 921 |
-
document_ranker = ImprovedRanking()
|
| 922 |
-
|
| 923 |
# Step 1: Rephrase the Query
|
| 924 |
rephrased_query = rephrase_query(chat_history, query, temperature=llm_temperature)
|
| 925 |
logger.info(f"Rephrased Query: {rephrased_query}")
|
|
@@ -928,7 +786,8 @@ def search_and_scrape(
|
|
| 928 |
logger.info("No need to perform search based on the rephrased query.")
|
| 929 |
return "No search needed for the provided input."
|
| 930 |
|
| 931 |
-
#
|
|
|
|
| 932 |
params = {
|
| 933 |
'q': rephrased_query,
|
| 934 |
'format': 'json',
|
|
@@ -941,11 +800,13 @@ def search_and_scrape(
|
|
| 941 |
|
| 942 |
# Remove empty parameters
|
| 943 |
params = {k: v for k, v in params.items() if v != ""}
|
| 944 |
-
|
|
|
|
| 945 |
if 'engines' not in params:
|
| 946 |
-
params['engines'] = 'google'
|
| 947 |
logger.info("No engines specified. Defaulting to 'google'.")
|
| 948 |
|
|
|
|
| 949 |
headers = {
|
| 950 |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
|
| 951 |
'Accept': 'application/json, text/javascript, */*; q=0.01',
|
|
@@ -961,16 +822,18 @@ def search_and_scrape(
|
|
| 961 |
|
| 962 |
scraped_content = []
|
| 963 |
page = 1
|
| 964 |
-
|
| 965 |
-
# Content scraping loop remains mostly the same, but add quality assessment
|
| 966 |
while len(scraped_content) < num_results:
|
|
|
|
| 967 |
params['pageno'] = page
|
| 968 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 969 |
try:
|
| 970 |
-
session = requests_retry_session()
|
| 971 |
if method.upper() == "GET":
|
| 972 |
response = session.get(SEARXNG_URL, params=params, headers=headers, timeout=10, verify=certifi.where())
|
| 973 |
-
else:
|
| 974 |
response = session.post(SEARXNG_URL, data=params, headers=headers, timeout=10, verify=certifi.where())
|
| 975 |
|
| 976 |
response.raise_for_status()
|
|
@@ -979,8 +842,9 @@ def search_and_scrape(
|
|
| 979 |
return f"An error occurred during the search request: {e}"
|
| 980 |
|
| 981 |
search_results = response.json()
|
|
|
|
|
|
|
| 982 |
results = search_results.get('results', [])
|
| 983 |
-
|
| 984 |
if not results:
|
| 985 |
logger.warning(f"No more results returned from SearXNG on page {page}.")
|
| 986 |
break
|
|
@@ -988,40 +852,33 @@ def search_and_scrape(
|
|
| 988 |
for result in results:
|
| 989 |
if len(scraped_content) >= num_results:
|
| 990 |
break
|
| 991 |
-
|
| 992 |
url = result.get('url', '')
|
| 993 |
title = result.get('title', 'No title')
|
| 994 |
-
|
| 995 |
if not is_valid_url(url):
|
| 996 |
logger.warning(f"Invalid URL: {url}")
|
| 997 |
continue
|
| 998 |
-
|
| 999 |
try:
|
| 1000 |
logger.info(f"Processing content from: {url}")
|
|
|
|
| 1001 |
content = scrape_full_content(url, max_chars, timeout, use_pydf2)
|
| 1002 |
|
| 1003 |
-
if content is None:
|
| 1004 |
continue
|
| 1005 |
|
| 1006 |
if not content:
|
| 1007 |
logger.warning(f"Failed to scrape content from {url}")
|
| 1008 |
continue
|
| 1009 |
|
| 1010 |
-
# Add initial quality assessment
|
| 1011 |
-
doc_quality = document_ranker.assess_document_quality({
|
| 1012 |
-
"title": title,
|
| 1013 |
-
"content": content
|
| 1014 |
-
})
|
| 1015 |
-
|
| 1016 |
scraped_content.append({
|
| 1017 |
"title": title,
|
| 1018 |
"url": url,
|
| 1019 |
"content": content,
|
| 1020 |
-
"scraper": "pdf" if url.lower().endswith('.pdf') else "newspaper"
|
| 1021 |
-
"quality_score": doc_quality
|
| 1022 |
})
|
| 1023 |
-
logger.info(f"Successfully scraped content from {url}.
|
| 1024 |
-
|
| 1025 |
except requests.exceptions.RequestException as e:
|
| 1026 |
logger.error(f"Error scraping {url}: {e}")
|
| 1027 |
except Exception as e:
|
|
@@ -1033,108 +890,48 @@ def search_and_scrape(
|
|
| 1033 |
logger.warning("No content scraped from search results.")
|
| 1034 |
return "No content could be scraped from the search results."
|
| 1035 |
|
| 1036 |
-
|
|
|
|
|
|
|
| 1037 |
relevant_documents = []
|
| 1038 |
-
unique_summaries =
|
| 1039 |
-
|
| 1040 |
for doc in scraped_content:
|
| 1041 |
assessment = assess_relevance_and_summarize(client, rephrased_query, doc, temperature=llm_temperature)
|
| 1042 |
relevance, summary = assessment.split('\n', 1)
|
| 1043 |
-
|
| 1044 |
if relevance.strip().lower() == "relevant: yes":
|
| 1045 |
summary_text = summary.replace("Summary: ", "").strip()
|
| 1046 |
|
| 1047 |
-
if is_content_unique(summary_text, unique_summaries
|
| 1048 |
-
# Calculate comprehensive relevance score using new method
|
| 1049 |
-
relevance_score = document_ranker.calculate_relevance_score(
|
| 1050 |
-
{
|
| 1051 |
-
"title": doc['title'],
|
| 1052 |
-
"content": doc['content'],
|
| 1053 |
-
"summary": summary_text
|
| 1054 |
-
},
|
| 1055 |
-
rephrased_query,
|
| 1056 |
-
similarity_model
|
| 1057 |
-
)
|
| 1058 |
-
|
| 1059 |
relevant_documents.append({
|
| 1060 |
"title": doc['title'],
|
| 1061 |
"url": doc['url'],
|
| 1062 |
-
"content": doc['content'],
|
| 1063 |
"summary": summary_text,
|
| 1064 |
-
"scraper": doc['scraper']
|
| 1065 |
-
"relevance_score": relevance_score,
|
| 1066 |
-
"quality_score": doc['quality_score']
|
| 1067 |
})
|
| 1068 |
-
unique_summaries.
|
|
|
|
|
|
|
| 1069 |
|
| 1070 |
if not relevant_documents:
|
| 1071 |
logger.warning("No relevant and unique documents found.")
|
| 1072 |
-
return "No relevant and unique
|
| 1073 |
-
|
| 1074 |
-
# Enhanced reranking using improved weights and BM25
|
| 1075 |
-
try:
|
| 1076 |
-
# Get query-adaptive weights
|
| 1077 |
-
bm25_weight, semantic_weight = document_ranker.get_adaptive_weights(rephrased_query)
|
| 1078 |
-
logger.info(f"Using adaptive weights - BM25: {bm25_weight}, Semantic: {semantic_weight}")
|
| 1079 |
-
|
| 1080 |
-
# Prepare documents for BM25
|
| 1081 |
-
doc_texts = [f"{doc['title']} {doc['content']}" for doc in relevant_documents]
|
| 1082 |
-
|
| 1083 |
-
# Initialize and fit BM25
|
| 1084 |
-
bm25 = BM25()
|
| 1085 |
-
bm25.fit(doc_texts)
|
| 1086 |
-
|
| 1087 |
-
# Get BM25 scores
|
| 1088 |
-
bm25_scores = bm25.get_scores(rephrased_query)
|
| 1089 |
-
|
| 1090 |
-
# Calculate semantic scores using title and content
|
| 1091 |
-
query_embedding = similarity_model.encode(rephrased_query, convert_to_tensor=True)
|
| 1092 |
-
doc_embeddings = similarity_model.encode(
|
| 1093 |
-
[f"{doc['title']} {doc['summary']}" for doc in relevant_documents],
|
| 1094 |
-
convert_to_tensor=True
|
| 1095 |
-
)
|
| 1096 |
-
semantic_scores = util.cos_sim(query_embedding, doc_embeddings)[0]
|
| 1097 |
-
|
| 1098 |
-
# Get quality scores
|
| 1099 |
-
quality_scores = np.array([doc['quality_score'] for doc in relevant_documents])
|
| 1100 |
-
|
| 1101 |
-
# Normalize all scores
|
| 1102 |
-
bm25_scores_norm = normalize_scores(bm25_scores)
|
| 1103 |
-
semantic_scores_norm = normalize_scores(semantic_scores.numpy())
|
| 1104 |
-
quality_scores_norm = normalize_scores(quality_scores)
|
| 1105 |
-
relevance_scores = normalize_scores(
|
| 1106 |
-
np.array([doc['relevance_score'] for doc in relevant_documents])
|
| 1107 |
-
)
|
| 1108 |
-
|
| 1109 |
-
# Combine scores with weights
|
| 1110 |
-
final_scores = (
|
| 1111 |
-
bm25_weight * bm25_scores_norm +
|
| 1112 |
-
semantic_weight * semantic_scores_norm +
|
| 1113 |
-
0.15 * quality_scores_norm + # Add quality score weight
|
| 1114 |
-
0.15 * relevance_scores # Reduced from 0.2 to accommodate quality
|
| 1115 |
-
)
|
| 1116 |
-
|
| 1117 |
-
# Create scored documents
|
| 1118 |
-
scored_documents = list(zip(relevant_documents, final_scores))
|
| 1119 |
-
scored_documents.sort(key=lambda x: x[1], reverse=True)
|
| 1120 |
-
|
| 1121 |
-
# Take top results
|
| 1122 |
-
reranked_docs = [doc for doc, _ in scored_documents[:num_results]]
|
| 1123 |
-
|
| 1124 |
-
except Exception as e:
|
| 1125 |
-
logger.error(f"Error during document reranking: {e}")
|
| 1126 |
-
# Fallback to basic sorting by relevance and quality
|
| 1127 |
-
reranked_docs = sorted(
|
| 1128 |
-
relevant_documents,
|
| 1129 |
-
key=lambda x: (x['relevance_score'] + x['quality_score']) / 2,
|
| 1130 |
-
reverse=True
|
| 1131 |
-
)[:num_results]
|
| 1132 |
|
|
|
|
|
|
|
|
|
|
| 1133 |
if not reranked_docs:
|
| 1134 |
logger.warning("No documents remained after reranking.")
|
| 1135 |
-
return "No relevant
|
|
|
|
|
|
|
| 1136 |
|
| 1137 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1138 |
llm_input = {
|
| 1139 |
"query": query,
|
| 1140 |
"documents": [
|
|
@@ -1142,13 +939,12 @@ def search_and_scrape(
|
|
| 1142 |
"title": doc['title'],
|
| 1143 |
"url": doc['url'],
|
| 1144 |
"summary": doc['summary'],
|
| 1145 |
-
"
|
| 1146 |
-
|
| 1147 |
-
} for doc in reranked_docs
|
| 1148 |
]
|
| 1149 |
}
|
| 1150 |
|
| 1151 |
-
# LLM Summarization
|
| 1152 |
llm_summary = llm_summarize(json.dumps(llm_input), model, temperature=llm_temperature)
|
| 1153 |
|
| 1154 |
return llm_summary
|
|
@@ -1157,12 +953,6 @@ def search_and_scrape(
|
|
| 1157 |
logger.error(f"Unexpected error in search_and_scrape: {e}")
|
| 1158 |
return f"An unexpected error occurred during the search and scrape process: {e}"
|
| 1159 |
|
| 1160 |
-
def normalize_scores(scores: np.ndarray) -> np.ndarray:
|
| 1161 |
-
"""Normalize scores to range [0, 1]"""
|
| 1162 |
-
if np.all(scores == scores[0]):
|
| 1163 |
-
return np.ones_like(scores)
|
| 1164 |
-
return (scores - np.min(scores)) / (np.max(scores) - np.min(scores))
|
| 1165 |
-
|
| 1166 |
# Helper function to get the appropriate client for each model
|
| 1167 |
def get_client_for_model(model: str) -> Any:
|
| 1168 |
if model == "huggingface":
|
|
@@ -1218,7 +1008,7 @@ iface = gr.ChatInterface(
|
|
| 1218 |
description="Ask Sentinel any question. It will search the web for recent information or use its knowledge base as appropriate.",
|
| 1219 |
theme=gr.Theme.from_hub("allenai/gradio-theme"),
|
| 1220 |
additional_inputs=[
|
| 1221 |
-
gr.Checkbox(label="Only do web search", value=
|
| 1222 |
gr.Slider(5, 20, value=3, step=1, label="Number of initial results"),
|
| 1223 |
gr.Slider(500, 10000, value=1500, step=100, label="Max characters to retrieve"),
|
| 1224 |
gr.Dropdown(["", "day", "week", "month", "year"], value="week", label="Time Range"),
|
|
@@ -1231,7 +1021,7 @@ iface = gr.ChatInterface(
|
|
| 1231 |
label="Engines"
|
| 1232 |
),
|
| 1233 |
gr.Slider(0, 2, value=2, step=1, label="Safe Search Level"),
|
| 1234 |
-
gr.Radio(["GET", "POST"], value="
|
| 1235 |
gr.Slider(0, 1, value=0.2, step=0.1, label="LLM Temperature"),
|
| 1236 |
gr.Dropdown(all_models, value=default_model, label="LLM Model"),
|
| 1237 |
gr.Checkbox(label="Use PyPDF2 for PDF scraping", value=True),
|
|
@@ -1250,4 +1040,4 @@ iface = gr.ChatInterface(
|
|
| 1250 |
|
| 1251 |
if __name__ == "__main__":
|
| 1252 |
logger.info("Starting the SearXNG Scraper for News using ChatInterface with Advanced Parameters")
|
| 1253 |
-
iface.launch(share=
|
|
|
|
| 39 |
import datetime
|
| 40 |
from abc import ABC, abstractmethod
|
| 41 |
from typing import List, Dict, Any
|
|
|
|
|
|
|
| 42 |
|
| 43 |
# Automatically get the current year
|
| 44 |
CURRENT_YEAR = datetime.datetime.now().year
|
|
|
|
| 84 |
all_models = ["huggingface", "groq", "mistral"] + custom_models
|
| 85 |
|
| 86 |
# Determine the default model
|
| 87 |
+
default_model = CUSTOM_LLM_DEFAULT_MODEL if CUSTOM_LLM_DEFAULT_MODEL in all_models else "groq"
|
| 88 |
|
| 89 |
logger.info(f"Default model selected: {default_model}")
|
| 90 |
|
|
|
|
| 534 |
doc_texts.append(doc_text)
|
| 535 |
return doc_texts, documents
|
| 536 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 537 |
# Now modify the rerank_documents_with_priority function to include BM25 ranking
|
| 538 |
+
def rerank_documents(query: str, documents: List[Dict],
|
| 539 |
+
similarity_threshold: float = 0.95, max_results: int = 5) -> List[Dict]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 540 |
try:
|
| 541 |
if not documents:
|
| 542 |
+
logger.warning("No documents to rerank.")
|
| 543 |
return documents
|
| 544 |
|
| 545 |
+
# Step 1: Prepare documents for BM25
|
|
|
|
|
|
|
|
|
|
| 546 |
doc_texts, original_docs = prepare_documents_for_bm25(documents)
|
| 547 |
|
| 548 |
+
# Step 2: Initialize and fit BM25
|
| 549 |
bm25 = BM25()
|
| 550 |
bm25.fit(doc_texts)
|
| 551 |
|
| 552 |
+
# Step 3: Get BM25 scores
|
| 553 |
bm25_scores = bm25.get_scores(query)
|
| 554 |
|
| 555 |
+
# Step 4: Get semantic similarity scores
|
| 556 |
+
query_embedding = similarity_model.encode(query, convert_to_tensor=True)
|
| 557 |
+
doc_summaries = [doc['summary'] for doc in documents]
|
| 558 |
+
doc_embeddings = similarity_model.encode(doc_summaries, convert_to_tensor=True)
|
| 559 |
+
semantic_scores = util.cos_sim(query_embedding, doc_embeddings)[0]
|
| 560 |
|
| 561 |
+
# Step 5: Combine scores (normalize first)
|
| 562 |
bm25_scores_norm = (bm25_scores - np.min(bm25_scores)) / (np.max(bm25_scores) - np.min(bm25_scores))
|
| 563 |
+
semantic_scores_norm = (semantic_scores - torch.min(semantic_scores)) / (torch.max(semantic_scores) - torch.min(semantic_scores))
|
| 564 |
|
| 565 |
+
# Combine scores with weights (0.4 for BM25, 0.6 for semantic similarity)
|
| 566 |
+
combined_scores = 0.4 * bm25_scores_norm + 0.6 * semantic_scores_norm.numpy()
|
|
|
|
| 567 |
|
| 568 |
+
# Create scored documents with combined scores
|
| 569 |
+
scored_documents = list(zip(documents, combined_scores))
|
| 570 |
|
| 571 |
+
# Sort by combined score (descending)
|
| 572 |
scored_documents.sort(key=lambda x: x[1], reverse=True)
|
| 573 |
|
| 574 |
+
# Filter similar documents
|
| 575 |
+
filtered_docs = []
|
| 576 |
+
added_contents = []
|
| 577 |
+
|
| 578 |
+
for doc, score in scored_documents:
|
| 579 |
+
if score < 0.3: # Minimum relevance threshold
|
| 580 |
+
continue
|
| 581 |
+
|
| 582 |
+
# Check similarity with already selected documents
|
| 583 |
+
doc_embedding = similarity_model.encode(doc['summary'], convert_to_tensor=True)
|
| 584 |
+
is_similar = False
|
| 585 |
+
|
| 586 |
+
for content in added_contents:
|
| 587 |
+
content_embedding = similarity_model.encode(content, convert_to_tensor=True)
|
| 588 |
+
similarity = util.pytorch_cos_sim(doc_embedding, content_embedding)
|
| 589 |
+
if similarity > similarity_threshold:
|
| 590 |
+
is_similar = True
|
| 591 |
+
break
|
| 592 |
+
|
| 593 |
+
if not is_similar:
|
| 594 |
+
filtered_docs.append(doc)
|
| 595 |
+
added_contents.append(doc['summary'])
|
| 596 |
+
|
| 597 |
+
if len(filtered_docs) >= max_results:
|
| 598 |
+
break
|
| 599 |
+
|
| 600 |
+
logger.info(f"Reranked and filtered to {len(filtered_docs)} unique documents using BM25 and semantic similarity.")
|
| 601 |
+
return filtered_docs
|
| 602 |
|
| 603 |
except Exception as e:
|
| 604 |
+
logger.error(f"Error during reranking documents: {e}")
|
| 605 |
+
return documents[:max_results] # Fallback to first max_results documents if reranking fails
|
| 606 |
|
| 607 |
def compute_similarity(text1, text2):
|
| 608 |
# Encode the texts
|
|
|
|
| 778 |
use_pydf2: bool = True
|
| 779 |
):
|
| 780 |
try:
|
|
|
|
|
|
|
|
|
|
| 781 |
# Step 1: Rephrase the Query
|
| 782 |
rephrased_query = rephrase_query(chat_history, query, temperature=llm_temperature)
|
| 783 |
logger.info(f"Rephrased Query: {rephrased_query}")
|
|
|
|
| 786 |
logger.info("No need to perform search based on the rephrased query.")
|
| 787 |
return "No search needed for the provided input."
|
| 788 |
|
| 789 |
+
# Step 2: Perform search
|
| 790 |
+
# Search query parameters
|
| 791 |
params = {
|
| 792 |
'q': rephrased_query,
|
| 793 |
'format': 'json',
|
|
|
|
| 800 |
|
| 801 |
# Remove empty parameters
|
| 802 |
params = {k: v for k, v in params.items() if v != ""}
|
| 803 |
+
|
| 804 |
+
# If no engines are specified, set default engines
|
| 805 |
if 'engines' not in params:
|
| 806 |
+
params['engines'] = 'google' # Default to 'google' or any preferred engine
|
| 807 |
logger.info("No engines specified. Defaulting to 'google'.")
|
| 808 |
|
| 809 |
+
# Headers for SearXNG request
|
| 810 |
headers = {
|
| 811 |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
|
| 812 |
'Accept': 'application/json, text/javascript, */*; q=0.01',
|
|
|
|
| 822 |
|
| 823 |
scraped_content = []
|
| 824 |
page = 1
|
|
|
|
|
|
|
| 825 |
while len(scraped_content) < num_results:
|
| 826 |
+
# Update params with current page
|
| 827 |
params['pageno'] = page
|
| 828 |
+
|
| 829 |
+
# Send request to SearXNG
|
| 830 |
+
logger.info(f"Sending request to SearXNG for query: {rephrased_query} (Page {page})")
|
| 831 |
+
session = requests_retry_session()
|
| 832 |
+
|
| 833 |
try:
|
|
|
|
| 834 |
if method.upper() == "GET":
|
| 835 |
response = session.get(SEARXNG_URL, params=params, headers=headers, timeout=10, verify=certifi.where())
|
| 836 |
+
else: # POST
|
| 837 |
response = session.post(SEARXNG_URL, data=params, headers=headers, timeout=10, verify=certifi.where())
|
| 838 |
|
| 839 |
response.raise_for_status()
|
|
|
|
| 842 |
return f"An error occurred during the search request: {e}"
|
| 843 |
|
| 844 |
search_results = response.json()
|
| 845 |
+
logger.debug(f"SearXNG Response: {search_results}")
|
| 846 |
+
|
| 847 |
results = search_results.get('results', [])
|
|
|
|
| 848 |
if not results:
|
| 849 |
logger.warning(f"No more results returned from SearXNG on page {page}.")
|
| 850 |
break
|
|
|
|
| 852 |
for result in results:
|
| 853 |
if len(scraped_content) >= num_results:
|
| 854 |
break
|
| 855 |
+
|
| 856 |
url = result.get('url', '')
|
| 857 |
title = result.get('title', 'No title')
|
| 858 |
+
|
| 859 |
if not is_valid_url(url):
|
| 860 |
logger.warning(f"Invalid URL: {url}")
|
| 861 |
continue
|
| 862 |
+
|
| 863 |
try:
|
| 864 |
logger.info(f"Processing content from: {url}")
|
| 865 |
+
|
| 866 |
content = scrape_full_content(url, max_chars, timeout, use_pydf2)
|
| 867 |
|
| 868 |
+
if content is None: # This means it's a PDF and use_pydf2 is False
|
| 869 |
continue
|
| 870 |
|
| 871 |
if not content:
|
| 872 |
logger.warning(f"Failed to scrape content from {url}")
|
| 873 |
continue
|
| 874 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 875 |
scraped_content.append({
|
| 876 |
"title": title,
|
| 877 |
"url": url,
|
| 878 |
"content": content,
|
| 879 |
+
"scraper": "pdf" if url.lower().endswith('.pdf') else "newspaper"
|
|
|
|
| 880 |
})
|
| 881 |
+
logger.info(f"Successfully scraped content from {url}. Total scraped: {len(scraped_content)}")
|
|
|
|
| 882 |
except requests.exceptions.RequestException as e:
|
| 883 |
logger.error(f"Error scraping {url}: {e}")
|
| 884 |
except Exception as e:
|
|
|
|
| 890 |
logger.warning("No content scraped from search results.")
|
| 891 |
return "No content could be scraped from the search results."
|
| 892 |
|
| 893 |
+
logger.info(f"Successfully scraped {len(scraped_content)} documents.")
|
| 894 |
+
|
| 895 |
+
# Step 4: Assess relevance, summarize, and check for uniqueness
|
| 896 |
relevant_documents = []
|
| 897 |
+
unique_summaries = []
|
|
|
|
| 898 |
for doc in scraped_content:
|
| 899 |
assessment = assess_relevance_and_summarize(client, rephrased_query, doc, temperature=llm_temperature)
|
| 900 |
relevance, summary = assessment.split('\n', 1)
|
| 901 |
+
|
| 902 |
if relevance.strip().lower() == "relevant: yes":
|
| 903 |
summary_text = summary.replace("Summary: ", "").strip()
|
| 904 |
|
| 905 |
+
if is_content_unique(summary_text, unique_summaries):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 906 |
relevant_documents.append({
|
| 907 |
"title": doc['title'],
|
| 908 |
"url": doc['url'],
|
|
|
|
| 909 |
"summary": summary_text,
|
| 910 |
+
"scraper": doc['scraper']
|
|
|
|
|
|
|
| 911 |
})
|
| 912 |
+
unique_summaries.append(summary_text)
|
| 913 |
+
else:
|
| 914 |
+
logger.info(f"Skipping similar content: {doc['title']}")
|
| 915 |
|
| 916 |
if not relevant_documents:
|
| 917 |
logger.warning("No relevant and unique documents found.")
|
| 918 |
+
return "No relevant and unique news found for the given query."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 919 |
|
| 920 |
+
# Step 5: Rerank documents based on similarity to query
|
| 921 |
+
reranked_docs = rerank_documents(rephrased_query, relevant_documents, similarity_threshold=0.95, max_results=num_results)
|
| 922 |
+
|
| 923 |
if not reranked_docs:
|
| 924 |
logger.warning("No documents remained after reranking.")
|
| 925 |
+
return "No relevant news found after filtering and ranking."
|
| 926 |
+
|
| 927 |
+
logger.info(f"Reranked and filtered to top {len(reranked_docs)} unique, related documents.")
|
| 928 |
|
| 929 |
+
# Step 5: Scrape full content for top documents (up to num_results)
|
| 930 |
+
for doc in reranked_docs[:num_results]:
|
| 931 |
+
full_content = scrape_full_content(doc['url'], max_chars)
|
| 932 |
+
doc['full_content'] = full_content
|
| 933 |
+
|
| 934 |
+
# Prepare JSON for LLM
|
| 935 |
llm_input = {
|
| 936 |
"query": query,
|
| 937 |
"documents": [
|
|
|
|
| 939 |
"title": doc['title'],
|
| 940 |
"url": doc['url'],
|
| 941 |
"summary": doc['summary'],
|
| 942 |
+
"full_content": doc['full_content']
|
| 943 |
+
} for doc in reranked_docs[:num_results]
|
|
|
|
| 944 |
]
|
| 945 |
}
|
| 946 |
|
| 947 |
+
# Step 6: LLM Summarization
|
| 948 |
llm_summary = llm_summarize(json.dumps(llm_input), model, temperature=llm_temperature)
|
| 949 |
|
| 950 |
return llm_summary
|
|
|
|
| 953 |
logger.error(f"Unexpected error in search_and_scrape: {e}")
|
| 954 |
return f"An unexpected error occurred during the search and scrape process: {e}"
|
| 955 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 956 |
# Helper function to get the appropriate client for each model
|
| 957 |
def get_client_for_model(model: str) -> Any:
|
| 958 |
if model == "huggingface":
|
|
|
|
| 1008 |
description="Ask Sentinel any question. It will search the web for recent information or use its knowledge base as appropriate.",
|
| 1009 |
theme=gr.Theme.from_hub("allenai/gradio-theme"),
|
| 1010 |
additional_inputs=[
|
| 1011 |
+
gr.Checkbox(label="Only do web search", value=True), # Add this line
|
| 1012 |
gr.Slider(5, 20, value=3, step=1, label="Number of initial results"),
|
| 1013 |
gr.Slider(500, 10000, value=1500, step=100, label="Max characters to retrieve"),
|
| 1014 |
gr.Dropdown(["", "day", "week", "month", "year"], value="week", label="Time Range"),
|
|
|
|
| 1021 |
label="Engines"
|
| 1022 |
),
|
| 1023 |
gr.Slider(0, 2, value=2, step=1, label="Safe Search Level"),
|
| 1024 |
+
gr.Radio(["GET", "POST"], value="GET", label="HTTP Method"),
|
| 1025 |
gr.Slider(0, 1, value=0.2, step=0.1, label="LLM Temperature"),
|
| 1026 |
gr.Dropdown(all_models, value=default_model, label="LLM Model"),
|
| 1027 |
gr.Checkbox(label="Use PyPDF2 for PDF scraping", value=True),
|
|
|
|
| 1040 |
|
| 1041 |
if __name__ == "__main__":
|
| 1042 |
logger.info("Starting the SearXNG Scraper for News using ChatInterface with Advanced Parameters")
|
| 1043 |
+
iface.launch(share=True)
|