Spaces:
Runtime error
Runtime error
Commit
·
725414f
1
Parent(s):
4fde81c
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import nltk
|
2 |
+
from finbert_embedding.embedding import FinbertEmbedding
|
3 |
+
import pandas as pd
|
4 |
+
from nltk.cluster import KMeansClusterer
|
5 |
+
import numpy as np
|
6 |
+
import os
|
7 |
+
from scipy.spatial import distance_matrix
|
8 |
+
from tensorflow.python.lib.io import file_io
|
9 |
+
import pickle
|
10 |
+
|
11 |
+
|
12 |
+
nltk.download('punkt')
|
13 |
+
|
14 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
15 |
+
|
16 |
+
checkpoint = "Shivam29rathore/finBert_10k"
|
17 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
18 |
+
|
19 |
+
|
20 |
+
def make_extractive_summary(word):
|
21 |
+
# Instantiate path to store each text Datafile in dataframe
|
22 |
+
data_path = "/tmp/"
|
23 |
+
if not os.path.exists(data_path):
|
24 |
+
os.makedirs(data_path)
|
25 |
+
input_ = "/tmp/input.txt"
|
26 |
+
# Write file to disk so we can convert each datapoint to a txt file
|
27 |
+
with open(input_, "w") as file:
|
28 |
+
file.write(word)
|
29 |
+
# read the written txt into a variable to start clustering
|
30 |
+
with open(input_ , 'r') as f:
|
31 |
+
text = f.read()
|
32 |
+
# Create tokens from the txt file
|
33 |
+
tokens = nltk.sent_tokenize(text)
|
34 |
+
# Strip out trailing and leading white spaces from tokens
|
35 |
+
sentences = [word.strip() for word in tokens]
|
36 |
+
#Create a DataFrame from the tokens
|
37 |
+
data = pd.DataFrame(sentences)
|
38 |
+
# Assign name Sentences to the column containing text tokens
|
39 |
+
data.columns = ['Sentences']
|
40 |
+
|
41 |
+
# Function to create numerical embeddings for each text tokens in dataframe
|
42 |
+
def get_sentence_embeddings():
|
43 |
+
# Create empty list for sentence embeddings
|
44 |
+
sentence_list = []
|
45 |
+
# Loop through all sentences and append sentence embeddings to list
|
46 |
+
for i in tokens:
|
47 |
+
sentence_embedding = model.sentence_vector(i)
|
48 |
+
sentence_list.append(sentence_embedding)
|
49 |
+
# Create empty list for ndarray
|
50 |
+
sentence_array=[]
|
51 |
+
# Loop through sentence list and change data type from tensor to array
|
52 |
+
for i in sentence_list:
|
53 |
+
sentence_array.append(i.numpy())
|
54 |
+
# return sentence embeddings as list
|
55 |
+
return sentence_array
|
56 |
+
|
57 |
+
# Apply get_sentence_embeddings to dataframe to create column Embeddings
|
58 |
+
data['Embeddings'] = get_sentence_embeddings()
|
59 |
+
|
60 |
+
#Number of expected sentences
|
61 |
+
NUM_CLUSTERS = 15
|
62 |
+
iterations = 25
|
63 |
+
# Convert Embeddings into an array and store in variable X
|
64 |
+
X = np.array(data['Embeddings'].to_list())
|
65 |
+
|
66 |
+
#Build k-means cluster algorithm
|
67 |
+
Kclusterer = KMeansClusterer(
|
68 |
+
NUM_CLUSTERS,
|
69 |
+
distance = nltk.cluster.util.cosine_distance,
|
70 |
+
repeats = iterations, avoid_empty_clusters = True)
|
71 |
+
|
72 |
+
# if length of text is too short, K means would return an error
|
73 |
+
# use the try except block to return the text as result if it is too short.
|
74 |
+
try:
|
75 |
+
|
76 |
+
assigned_clusters = Kclusterer.cluster(X,assign_clusters=True)
|
77 |
+
|
78 |
+
# Apply Kmean Cluster to DataFrame and create new columns Clusters and Centroid
|
79 |
+
data['Cluster'] = pd.Series(assigned_clusters, index = data.index)
|
80 |
+
data['Centroid'] = data['Cluster'].apply(lambda x: Kclusterer.means()[x])
|
81 |
+
|
82 |
+
# return the text if clustering algorithm catches an exceptiona and move to the next text file
|
83 |
+
except ValueError:
|
84 |
+
return text
|
85 |
+
|
86 |
+
# function that computes the distance of each embeddings from the centroid of the cluster
|
87 |
+
def distance_from_centroid(row):
|
88 |
+
return distance_matrix([row['Embeddings']], [row['Centroid'].tolist()])[0][0]
|
89 |
+
|
90 |
+
# apply distance_from_centroid function to data
|
91 |
+
data['Distance_From_Centroid'] = data.apply(distance_from_centroid, axis =1)
|
92 |
+
|
93 |
+
## Return Final Summary
|
94 |
+
summary = " ".join(data.sort_values(
|
95 |
+
'Distance_From_Centroid',
|
96 |
+
ascending = True).groupby('Cluster').head(1).sort_index()['Sentences'].tolist())
|
97 |
+
return summary
|
98 |
+
|
99 |
+
import gradio as gr
|
100 |
+
|
101 |
+
iface = gr.Interface(fn=make_extractive_summary,
|
102 |
+
inputs =gr.inputs.Textbox(lines=15,placeholder="Enter your text !!"),
|
103 |
+
outputs="text",title="Document Summarizer",description ="An AI that makes your life easier by helping you summarise long texts.")
|
104 |
+
iface.launch(auth=("hamoye","docai")
|