Spaces:
Runtime error
Runtime error
Commit
·
57fa22a
1
Parent(s):
bfbd040
Update app.py
Browse files
app.py
CHANGED
@@ -1,104 +1,40 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import pandas as pd
|
4 |
-
from nltk.cluster import KMeansClusterer
|
5 |
-
import numpy as np
|
6 |
-
import os
|
7 |
-
from scipy.spatial import distance_matrix
|
8 |
-
from tensorflow.python.lib.io import file_io
|
9 |
-
import pickle
|
10 |
-
|
11 |
-
|
12 |
-
nltk.download('punkt')
|
13 |
-
|
14 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
15 |
-
|
16 |
-
checkpoint = "Shivam29rathore/finBert_10k"
|
17 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
18 |
-
|
19 |
-
|
20 |
-
def make_extractive_summary(word):
|
21 |
-
# Instantiate path to store each text Datafile in dataframe
|
22 |
data_path = "/tmp/"
|
23 |
if not os.path.exists(data_path):
|
24 |
os.makedirs(data_path)
|
25 |
input_ = "/tmp/input.txt"
|
26 |
-
|
27 |
with open(input_, "w") as file:
|
28 |
file.write(word)
|
29 |
-
# read the written txt into a variable
|
30 |
with open(input_ , 'r') as f:
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
for i in sentence_list:
|
53 |
-
sentence_array.append(i.numpy())
|
54 |
-
# return sentence embeddings as list
|
55 |
-
return sentence_array
|
56 |
-
|
57 |
-
# Apply get_sentence_embeddings to dataframe to create column Embeddings
|
58 |
-
data['Embeddings'] = get_sentence_embeddings()
|
59 |
-
|
60 |
-
#Number of expected sentences
|
61 |
-
NUM_CLUSTERS = 15
|
62 |
-
iterations = 25
|
63 |
-
# Convert Embeddings into an array and store in variable X
|
64 |
-
X = np.array(data['Embeddings'].to_list())
|
65 |
-
|
66 |
-
#Build k-means cluster algorithm
|
67 |
-
Kclusterer = KMeansClusterer(
|
68 |
-
NUM_CLUSTERS,
|
69 |
-
distance = nltk.cluster.util.cosine_distance,
|
70 |
-
repeats = iterations, avoid_empty_clusters = True)
|
71 |
-
|
72 |
-
# if length of text is too short, K means would return an error
|
73 |
-
# use the try except block to return the text as result if it is too short.
|
74 |
-
try:
|
75 |
-
|
76 |
-
assigned_clusters = Kclusterer.cluster(X,assign_clusters=True)
|
77 |
-
|
78 |
-
# Apply Kmean Cluster to DataFrame and create new columns Clusters and Centroid
|
79 |
-
data['Cluster'] = pd.Series(assigned_clusters, index = data.index)
|
80 |
-
data['Centroid'] = data['Cluster'].apply(lambda x: Kclusterer.means()[x])
|
81 |
-
|
82 |
-
# return the text if clustering algorithm catches an exceptiona and move to the next text file
|
83 |
-
except ValueError:
|
84 |
-
return text
|
85 |
-
|
86 |
-
# function that computes the distance of each embeddings from the centroid of the cluster
|
87 |
-
def distance_from_centroid(row):
|
88 |
-
return distance_matrix([row['Embeddings']], [row['Centroid'].tolist()])[0][0]
|
89 |
|
90 |
-
# apply distance_from_centroid function to data
|
91 |
-
data['Distance_From_Centroid'] = data.apply(distance_from_centroid, axis =1)
|
92 |
|
93 |
-
## Return Final Summary
|
94 |
-
summary = " ".join(data.sort_values(
|
95 |
-
'Distance_From_Centroid',
|
96 |
-
ascending = True).groupby('Cluster').head(1).sort_index()['Sentences'].tolist())
|
97 |
-
return summary
|
98 |
-
|
99 |
import gradio as gr
|
100 |
|
101 |
-
iface = gr.Interface(fn=
|
102 |
inputs =gr.inputs.Textbox(lines=15,placeholder="Enter your text !!"),
|
103 |
outputs="text",title="Document Summarizer",description ="An AI that makes your life easier by helping you summarise long texts.")
|
104 |
-
iface.launch(auth=("
|
|
|
1 |
+
def summarize(word):
|
2 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
data_path = "/tmp/"
|
4 |
if not os.path.exists(data_path):
|
5 |
os.makedirs(data_path)
|
6 |
input_ = "/tmp/input.txt"
|
7 |
+
|
8 |
with open(input_, "w") as file:
|
9 |
file.write(word)
|
10 |
+
# read the written txt into a variable
|
11 |
with open(input_ , 'r') as f:
|
12 |
+
text_ = f.read()
|
13 |
+
|
14 |
+
def clean_data(texts):
|
15 |
+
import re
|
16 |
+
words = list()
|
17 |
+
for text in texts.split():
|
18 |
+
text = re.sub(r'\n','',text)
|
19 |
+
text = re.sub(r'\s$','',text)
|
20 |
+
words.append(text)
|
21 |
+
|
22 |
+
return "summarize " + " ".join(words)
|
23 |
+
text = clean_data(text_)
|
24 |
+
|
25 |
+
final_summary = []
|
26 |
+
for x in range(0,len(text)-1256,1256):
|
27 |
+
text_to_summarize= text[x:x+1256]
|
28 |
+
final_summary.append(t5.predict(text_to_summarize))
|
29 |
+
|
30 |
+
final_list = list(itertools.chain.from_iterable(final_summary))
|
31 |
+
final_list = ''.join(final_list)
|
32 |
+
return final_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
|
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
import gradio as gr
|
36 |
|
37 |
+
iface = gr.Interface(fn= summarize,
|
38 |
inputs =gr.inputs.Textbox(lines=15,placeholder="Enter your text !!"),
|
39 |
outputs="text",title="Document Summarizer",description ="An AI that makes your life easier by helping you summarise long texts.")
|
40 |
+
iface.launch(auth=("docai","ailabs"))
|