Delete Movie-recommendation-system
Browse files
Movie-recommendation-system/README.md
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
# Movie-recommendation-system
|
2 |
-
Movie Recommendation System , My first ML project
|
|
|
|
|
|
Movie-recommendation-system/main.ipynb
DELETED
@@ -1,1393 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 1,
|
6 |
-
"metadata": {},
|
7 |
-
"outputs": [],
|
8 |
-
"source": [
|
9 |
-
"import pandas as pd\n"
|
10 |
-
]
|
11 |
-
},
|
12 |
-
{
|
13 |
-
"cell_type": "code",
|
14 |
-
"execution_count": 2,
|
15 |
-
"metadata": {},
|
16 |
-
"outputs": [],
|
17 |
-
"source": [
|
18 |
-
"movies = pd.read_csv('top10K-TMDB-movies.csv')"
|
19 |
-
]
|
20 |
-
},
|
21 |
-
{
|
22 |
-
"cell_type": "code",
|
23 |
-
"execution_count": 3,
|
24 |
-
"metadata": {},
|
25 |
-
"outputs": [
|
26 |
-
{
|
27 |
-
"data": {
|
28 |
-
"text/html": [
|
29 |
-
"<div>\n",
|
30 |
-
"<style scoped>\n",
|
31 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
32 |
-
" vertical-align: middle;\n",
|
33 |
-
" }\n",
|
34 |
-
"\n",
|
35 |
-
" .dataframe tbody tr th {\n",
|
36 |
-
" vertical-align: top;\n",
|
37 |
-
" }\n",
|
38 |
-
"\n",
|
39 |
-
" .dataframe thead th {\n",
|
40 |
-
" text-align: right;\n",
|
41 |
-
" }\n",
|
42 |
-
"</style>\n",
|
43 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
44 |
-
" <thead>\n",
|
45 |
-
" <tr style=\"text-align: right;\">\n",
|
46 |
-
" <th></th>\n",
|
47 |
-
" <th>id</th>\n",
|
48 |
-
" <th>title</th>\n",
|
49 |
-
" <th>genre</th>\n",
|
50 |
-
" <th>original_language</th>\n",
|
51 |
-
" <th>overview</th>\n",
|
52 |
-
" <th>popularity</th>\n",
|
53 |
-
" <th>release_date</th>\n",
|
54 |
-
" <th>vote_average</th>\n",
|
55 |
-
" <th>vote_count</th>\n",
|
56 |
-
" </tr>\n",
|
57 |
-
" </thead>\n",
|
58 |
-
" <tbody>\n",
|
59 |
-
" <tr>\n",
|
60 |
-
" <th>0</th>\n",
|
61 |
-
" <td>278</td>\n",
|
62 |
-
" <td>The Shawshank Redemption</td>\n",
|
63 |
-
" <td>Drama,Crime</td>\n",
|
64 |
-
" <td>en</td>\n",
|
65 |
-
" <td>Framed in the 1940s for the double murder of h...</td>\n",
|
66 |
-
" <td>94.075</td>\n",
|
67 |
-
" <td>1994-09-23</td>\n",
|
68 |
-
" <td>8.7</td>\n",
|
69 |
-
" <td>21862</td>\n",
|
70 |
-
" </tr>\n",
|
71 |
-
" <tr>\n",
|
72 |
-
" <th>1</th>\n",
|
73 |
-
" <td>19404</td>\n",
|
74 |
-
" <td>Dilwale Dulhania Le Jayenge</td>\n",
|
75 |
-
" <td>Comedy,Drama,Romance</td>\n",
|
76 |
-
" <td>hi</td>\n",
|
77 |
-
" <td>Raj is a rich, carefree, happy-go-lucky second...</td>\n",
|
78 |
-
" <td>25.408</td>\n",
|
79 |
-
" <td>1995-10-19</td>\n",
|
80 |
-
" <td>8.7</td>\n",
|
81 |
-
" <td>3731</td>\n",
|
82 |
-
" </tr>\n",
|
83 |
-
" <tr>\n",
|
84 |
-
" <th>2</th>\n",
|
85 |
-
" <td>238</td>\n",
|
86 |
-
" <td>The Godfather</td>\n",
|
87 |
-
" <td>Drama,Crime</td>\n",
|
88 |
-
" <td>en</td>\n",
|
89 |
-
" <td>Spanning the years 1945 to 1955, a chronicle o...</td>\n",
|
90 |
-
" <td>90.585</td>\n",
|
91 |
-
" <td>1972-03-14</td>\n",
|
92 |
-
" <td>8.7</td>\n",
|
93 |
-
" <td>16280</td>\n",
|
94 |
-
" </tr>\n",
|
95 |
-
" <tr>\n",
|
96 |
-
" <th>3</th>\n",
|
97 |
-
" <td>424</td>\n",
|
98 |
-
" <td>Schindler's List</td>\n",
|
99 |
-
" <td>Drama,History,War</td>\n",
|
100 |
-
" <td>en</td>\n",
|
101 |
-
" <td>The true story of how businessman Oskar Schind...</td>\n",
|
102 |
-
" <td>44.761</td>\n",
|
103 |
-
" <td>1993-12-15</td>\n",
|
104 |
-
" <td>8.6</td>\n",
|
105 |
-
" <td>12959</td>\n",
|
106 |
-
" </tr>\n",
|
107 |
-
" <tr>\n",
|
108 |
-
" <th>4</th>\n",
|
109 |
-
" <td>240</td>\n",
|
110 |
-
" <td>The Godfather: Part II</td>\n",
|
111 |
-
" <td>Drama,Crime</td>\n",
|
112 |
-
" <td>en</td>\n",
|
113 |
-
" <td>In the continuing saga of the Corleone crime f...</td>\n",
|
114 |
-
" <td>57.749</td>\n",
|
115 |
-
" <td>1974-12-20</td>\n",
|
116 |
-
" <td>8.6</td>\n",
|
117 |
-
" <td>9811</td>\n",
|
118 |
-
" </tr>\n",
|
119 |
-
" <tr>\n",
|
120 |
-
" <th>5</th>\n",
|
121 |
-
" <td>667257</td>\n",
|
122 |
-
" <td>Impossible Things</td>\n",
|
123 |
-
" <td>Family,Drama</td>\n",
|
124 |
-
" <td>es</td>\n",
|
125 |
-
" <td>Matilde is a woman who, after the death of her...</td>\n",
|
126 |
-
" <td>14.358</td>\n",
|
127 |
-
" <td>2021-06-17</td>\n",
|
128 |
-
" <td>8.6</td>\n",
|
129 |
-
" <td>255</td>\n",
|
130 |
-
" </tr>\n",
|
131 |
-
" <tr>\n",
|
132 |
-
" <th>6</th>\n",
|
133 |
-
" <td>129</td>\n",
|
134 |
-
" <td>Spirited Away</td>\n",
|
135 |
-
" <td>Animation,Family,Fantasy</td>\n",
|
136 |
-
" <td>ja</td>\n",
|
137 |
-
" <td>A young girl, Chihiro, becomes trapped in a st...</td>\n",
|
138 |
-
" <td>92.056</td>\n",
|
139 |
-
" <td>2001-07-20</td>\n",
|
140 |
-
" <td>8.5</td>\n",
|
141 |
-
" <td>13093</td>\n",
|
142 |
-
" </tr>\n",
|
143 |
-
" <tr>\n",
|
144 |
-
" <th>7</th>\n",
|
145 |
-
" <td>730154</td>\n",
|
146 |
-
" <td>Your Eyes Tell</td>\n",
|
147 |
-
" <td>Romance,Drama</td>\n",
|
148 |
-
" <td>ja</td>\n",
|
149 |
-
" <td>A tragic accident lead to Kaori's blindness, b...</td>\n",
|
150 |
-
" <td>51.345</td>\n",
|
151 |
-
" <td>2020-10-23</td>\n",
|
152 |
-
" <td>8.5</td>\n",
|
153 |
-
" <td>339</td>\n",
|
154 |
-
" </tr>\n",
|
155 |
-
" <tr>\n",
|
156 |
-
" <th>8</th>\n",
|
157 |
-
" <td>372754</td>\n",
|
158 |
-
" <td>Dou kyu sei – Classmates</td>\n",
|
159 |
-
" <td>Romance,Animation</td>\n",
|
160 |
-
" <td>ja</td>\n",
|
161 |
-
" <td>Rihito Sajo, an honor student with a perfect s...</td>\n",
|
162 |
-
" <td>14.285</td>\n",
|
163 |
-
" <td>2016-02-20</td>\n",
|
164 |
-
" <td>8.5</td>\n",
|
165 |
-
" <td>239</td>\n",
|
166 |
-
" </tr>\n",
|
167 |
-
" <tr>\n",
|
168 |
-
" <th>9</th>\n",
|
169 |
-
" <td>372058</td>\n",
|
170 |
-
" <td>Your Name.</td>\n",
|
171 |
-
" <td>Romance,Animation,Drama</td>\n",
|
172 |
-
" <td>ja</td>\n",
|
173 |
-
" <td>High schoolers Mitsuha and Taki are complete s...</td>\n",
|
174 |
-
" <td>158.270</td>\n",
|
175 |
-
" <td>2016-08-26</td>\n",
|
176 |
-
" <td>8.5</td>\n",
|
177 |
-
" <td>8895</td>\n",
|
178 |
-
" </tr>\n",
|
179 |
-
" </tbody>\n",
|
180 |
-
"</table>\n",
|
181 |
-
"</div>"
|
182 |
-
],
|
183 |
-
"text/plain": [
|
184 |
-
" id title genre \\\n",
|
185 |
-
"0 278 The Shawshank Redemption Drama,Crime \n",
|
186 |
-
"1 19404 Dilwale Dulhania Le Jayenge Comedy,Drama,Romance \n",
|
187 |
-
"2 238 The Godfather Drama,Crime \n",
|
188 |
-
"3 424 Schindler's List Drama,History,War \n",
|
189 |
-
"4 240 The Godfather: Part II Drama,Crime \n",
|
190 |
-
"5 667257 Impossible Things Family,Drama \n",
|
191 |
-
"6 129 Spirited Away Animation,Family,Fantasy \n",
|
192 |
-
"7 730154 Your Eyes Tell Romance,Drama \n",
|
193 |
-
"8 372754 Dou kyu sei – Classmates Romance,Animation \n",
|
194 |
-
"9 372058 Your Name. Romance,Animation,Drama \n",
|
195 |
-
"\n",
|
196 |
-
" original_language overview \\\n",
|
197 |
-
"0 en Framed in the 1940s for the double murder of h... \n",
|
198 |
-
"1 hi Raj is a rich, carefree, happy-go-lucky second... \n",
|
199 |
-
"2 en Spanning the years 1945 to 1955, a chronicle o... \n",
|
200 |
-
"3 en The true story of how businessman Oskar Schind... \n",
|
201 |
-
"4 en In the continuing saga of the Corleone crime f... \n",
|
202 |
-
"5 es Matilde is a woman who, after the death of her... \n",
|
203 |
-
"6 ja A young girl, Chihiro, becomes trapped in a st... \n",
|
204 |
-
"7 ja A tragic accident lead to Kaori's blindness, b... \n",
|
205 |
-
"8 ja Rihito Sajo, an honor student with a perfect s... \n",
|
206 |
-
"9 ja High schoolers Mitsuha and Taki are complete s... \n",
|
207 |
-
"\n",
|
208 |
-
" popularity release_date vote_average vote_count \n",
|
209 |
-
"0 94.075 1994-09-23 8.7 21862 \n",
|
210 |
-
"1 25.408 1995-10-19 8.7 3731 \n",
|
211 |
-
"2 90.585 1972-03-14 8.7 16280 \n",
|
212 |
-
"3 44.761 1993-12-15 8.6 12959 \n",
|
213 |
-
"4 57.749 1974-12-20 8.6 9811 \n",
|
214 |
-
"5 14.358 2021-06-17 8.6 255 \n",
|
215 |
-
"6 92.056 2001-07-20 8.5 13093 \n",
|
216 |
-
"7 51.345 2020-10-23 8.5 339 \n",
|
217 |
-
"8 14.285 2016-02-20 8.5 239 \n",
|
218 |
-
"9 158.270 2016-08-26 8.5 8895 "
|
219 |
-
]
|
220 |
-
},
|
221 |
-
"execution_count": 3,
|
222 |
-
"metadata": {},
|
223 |
-
"output_type": "execute_result"
|
224 |
-
}
|
225 |
-
],
|
226 |
-
"source": [
|
227 |
-
"movies.head(10)"
|
228 |
-
]
|
229 |
-
},
|
230 |
-
{
|
231 |
-
"cell_type": "code",
|
232 |
-
"execution_count": 4,
|
233 |
-
"metadata": {},
|
234 |
-
"outputs": [
|
235 |
-
{
|
236 |
-
"data": {
|
237 |
-
"text/html": [
|
238 |
-
"<div>\n",
|
239 |
-
"<style scoped>\n",
|
240 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
241 |
-
" vertical-align: middle;\n",
|
242 |
-
" }\n",
|
243 |
-
"\n",
|
244 |
-
" .dataframe tbody tr th {\n",
|
245 |
-
" vertical-align: top;\n",
|
246 |
-
" }\n",
|
247 |
-
"\n",
|
248 |
-
" .dataframe thead th {\n",
|
249 |
-
" text-align: right;\n",
|
250 |
-
" }\n",
|
251 |
-
"</style>\n",
|
252 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
253 |
-
" <thead>\n",
|
254 |
-
" <tr style=\"text-align: right;\">\n",
|
255 |
-
" <th></th>\n",
|
256 |
-
" <th>id</th>\n",
|
257 |
-
" <th>popularity</th>\n",
|
258 |
-
" <th>vote_average</th>\n",
|
259 |
-
" <th>vote_count</th>\n",
|
260 |
-
" </tr>\n",
|
261 |
-
" </thead>\n",
|
262 |
-
" <tbody>\n",
|
263 |
-
" <tr>\n",
|
264 |
-
" <th>count</th>\n",
|
265 |
-
" <td>10000.000000</td>\n",
|
266 |
-
" <td>10000.000000</td>\n",
|
267 |
-
" <td>10000.000000</td>\n",
|
268 |
-
" <td>10000.000000</td>\n",
|
269 |
-
" </tr>\n",
|
270 |
-
" <tr>\n",
|
271 |
-
" <th>mean</th>\n",
|
272 |
-
" <td>161243.505000</td>\n",
|
273 |
-
" <td>34.697267</td>\n",
|
274 |
-
" <td>6.621150</td>\n",
|
275 |
-
" <td>1547.309400</td>\n",
|
276 |
-
" </tr>\n",
|
277 |
-
" <tr>\n",
|
278 |
-
" <th>std</th>\n",
|
279 |
-
" <td>211422.046043</td>\n",
|
280 |
-
" <td>211.684175</td>\n",
|
281 |
-
" <td>0.766231</td>\n",
|
282 |
-
" <td>2648.295789</td>\n",
|
283 |
-
" </tr>\n",
|
284 |
-
" <tr>\n",
|
285 |
-
" <th>min</th>\n",
|
286 |
-
" <td>5.000000</td>\n",
|
287 |
-
" <td>0.600000</td>\n",
|
288 |
-
" <td>4.600000</td>\n",
|
289 |
-
" <td>200.000000</td>\n",
|
290 |
-
" </tr>\n",
|
291 |
-
" <tr>\n",
|
292 |
-
" <th>25%</th>\n",
|
293 |
-
" <td>10127.750000</td>\n",
|
294 |
-
" <td>9.154750</td>\n",
|
295 |
-
" <td>6.100000</td>\n",
|
296 |
-
" <td>315.000000</td>\n",
|
297 |
-
" </tr>\n",
|
298 |
-
" <tr>\n",
|
299 |
-
" <th>50%</th>\n",
|
300 |
-
" <td>30002.500000</td>\n",
|
301 |
-
" <td>13.637500</td>\n",
|
302 |
-
" <td>6.600000</td>\n",
|
303 |
-
" <td>583.500000</td>\n",
|
304 |
-
" </tr>\n",
|
305 |
-
" <tr>\n",
|
306 |
-
" <th>75%</th>\n",
|
307 |
-
" <td>310133.500000</td>\n",
|
308 |
-
" <td>25.651250</td>\n",
|
309 |
-
" <td>7.200000</td>\n",
|
310 |
-
" <td>1460.000000</td>\n",
|
311 |
-
" </tr>\n",
|
312 |
-
" <tr>\n",
|
313 |
-
" <th>max</th>\n",
|
314 |
-
" <td>934761.000000</td>\n",
|
315 |
-
" <td>10436.917000</td>\n",
|
316 |
-
" <td>8.700000</td>\n",
|
317 |
-
" <td>31917.000000</td>\n",
|
318 |
-
" </tr>\n",
|
319 |
-
" </tbody>\n",
|
320 |
-
"</table>\n",
|
321 |
-
"</div>"
|
322 |
-
],
|
323 |
-
"text/plain": [
|
324 |
-
" id popularity vote_average vote_count\n",
|
325 |
-
"count 10000.000000 10000.000000 10000.000000 10000.000000\n",
|
326 |
-
"mean 161243.505000 34.697267 6.621150 1547.309400\n",
|
327 |
-
"std 211422.046043 211.684175 0.766231 2648.295789\n",
|
328 |
-
"min 5.000000 0.600000 4.600000 200.000000\n",
|
329 |
-
"25% 10127.750000 9.154750 6.100000 315.000000\n",
|
330 |
-
"50% 30002.500000 13.637500 6.600000 583.500000\n",
|
331 |
-
"75% 310133.500000 25.651250 7.200000 1460.000000\n",
|
332 |
-
"max 934761.000000 10436.917000 8.700000 31917.000000"
|
333 |
-
]
|
334 |
-
},
|
335 |
-
"execution_count": 4,
|
336 |
-
"metadata": {},
|
337 |
-
"output_type": "execute_result"
|
338 |
-
}
|
339 |
-
],
|
340 |
-
"source": [
|
341 |
-
"movies.describe()"
|
342 |
-
]
|
343 |
-
},
|
344 |
-
{
|
345 |
-
"cell_type": "code",
|
346 |
-
"execution_count": 5,
|
347 |
-
"metadata": {},
|
348 |
-
"outputs": [
|
349 |
-
{
|
350 |
-
"name": "stdout",
|
351 |
-
"output_type": "stream",
|
352 |
-
"text": [
|
353 |
-
"<class 'pandas.core.frame.DataFrame'>\n",
|
354 |
-
"RangeIndex: 10000 entries, 0 to 9999\n",
|
355 |
-
"Data columns (total 9 columns):\n",
|
356 |
-
" # Column Non-Null Count Dtype \n",
|
357 |
-
"--- ------ -------------- ----- \n",
|
358 |
-
" 0 id 10000 non-null int64 \n",
|
359 |
-
" 1 title 10000 non-null object \n",
|
360 |
-
" 2 genre 9997 non-null object \n",
|
361 |
-
" 3 original_language 10000 non-null object \n",
|
362 |
-
" 4 overview 9987 non-null object \n",
|
363 |
-
" 5 popularity 10000 non-null float64\n",
|
364 |
-
" 6 release_date 10000 non-null object \n",
|
365 |
-
" 7 vote_average 10000 non-null float64\n",
|
366 |
-
" 8 vote_count 10000 non-null int64 \n",
|
367 |
-
"dtypes: float64(2), int64(2), object(5)\n",
|
368 |
-
"memory usage: 703.2+ KB\n"
|
369 |
-
]
|
370 |
-
}
|
371 |
-
],
|
372 |
-
"source": [
|
373 |
-
"movies.info()"
|
374 |
-
]
|
375 |
-
},
|
376 |
-
{
|
377 |
-
"cell_type": "code",
|
378 |
-
"execution_count": 6,
|
379 |
-
"metadata": {},
|
380 |
-
"outputs": [
|
381 |
-
{
|
382 |
-
"data": {
|
383 |
-
"text/plain": [
|
384 |
-
"Index(['id', 'title', 'genre', 'original_language', 'overview', 'popularity',\n",
|
385 |
-
" 'release_date', 'vote_average', 'vote_count'],\n",
|
386 |
-
" dtype='object')"
|
387 |
-
]
|
388 |
-
},
|
389 |
-
"execution_count": 6,
|
390 |
-
"metadata": {},
|
391 |
-
"output_type": "execute_result"
|
392 |
-
}
|
393 |
-
],
|
394 |
-
"source": [
|
395 |
-
"movies.columns"
|
396 |
-
]
|
397 |
-
},
|
398 |
-
{
|
399 |
-
"cell_type": "code",
|
400 |
-
"execution_count": 36,
|
401 |
-
"metadata": {},
|
402 |
-
"outputs": [],
|
403 |
-
"source": [
|
404 |
-
"movies=movies[['id','title','overview','genre']]"
|
405 |
-
]
|
406 |
-
},
|
407 |
-
{
|
408 |
-
"cell_type": "code",
|
409 |
-
"execution_count": 37,
|
410 |
-
"metadata": {},
|
411 |
-
"outputs": [],
|
412 |
-
"source": [
|
413 |
-
"movies['tags']=movies['overview']+movies['genre']"
|
414 |
-
]
|
415 |
-
},
|
416 |
-
{
|
417 |
-
"cell_type": "code",
|
418 |
-
"execution_count": 38,
|
419 |
-
"metadata": {},
|
420 |
-
"outputs": [],
|
421 |
-
"source": [
|
422 |
-
"new_movies = movies.drop(columns=['overview','genre'])"
|
423 |
-
]
|
424 |
-
},
|
425 |
-
{
|
426 |
-
"cell_type": "code",
|
427 |
-
"execution_count": 39,
|
428 |
-
"metadata": {},
|
429 |
-
"outputs": [
|
430 |
-
{
|
431 |
-
"data": {
|
432 |
-
"text/html": [
|
433 |
-
"<div>\n",
|
434 |
-
"<style scoped>\n",
|
435 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
436 |
-
" vertical-align: middle;\n",
|
437 |
-
" }\n",
|
438 |
-
"\n",
|
439 |
-
" .dataframe tbody tr th {\n",
|
440 |
-
" vertical-align: top;\n",
|
441 |
-
" }\n",
|
442 |
-
"\n",
|
443 |
-
" .dataframe thead th {\n",
|
444 |
-
" text-align: right;\n",
|
445 |
-
" }\n",
|
446 |
-
"</style>\n",
|
447 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
448 |
-
" <thead>\n",
|
449 |
-
" <tr style=\"text-align: right;\">\n",
|
450 |
-
" <th></th>\n",
|
451 |
-
" <th>id</th>\n",
|
452 |
-
" <th>title</th>\n",
|
453 |
-
" <th>tags</th>\n",
|
454 |
-
" </tr>\n",
|
455 |
-
" </thead>\n",
|
456 |
-
" <tbody>\n",
|
457 |
-
" <tr>\n",
|
458 |
-
" <th>0</th>\n",
|
459 |
-
" <td>278</td>\n",
|
460 |
-
" <td>The Shawshank Redemption</td>\n",
|
461 |
-
" <td>Framed in the 1940s for the double murder of h...</td>\n",
|
462 |
-
" </tr>\n",
|
463 |
-
" <tr>\n",
|
464 |
-
" <th>1</th>\n",
|
465 |
-
" <td>19404</td>\n",
|
466 |
-
" <td>Dilwale Dulhania Le Jayenge</td>\n",
|
467 |
-
" <td>Raj is a rich, carefree, happy-go-lucky second...</td>\n",
|
468 |
-
" </tr>\n",
|
469 |
-
" <tr>\n",
|
470 |
-
" <th>2</th>\n",
|
471 |
-
" <td>238</td>\n",
|
472 |
-
" <td>The Godfather</td>\n",
|
473 |
-
" <td>Spanning the years 1945 to 1955, a chronicle o...</td>\n",
|
474 |
-
" </tr>\n",
|
475 |
-
" <tr>\n",
|
476 |
-
" <th>3</th>\n",
|
477 |
-
" <td>424</td>\n",
|
478 |
-
" <td>Schindler's List</td>\n",
|
479 |
-
" <td>The true story of how businessman Oskar Schind...</td>\n",
|
480 |
-
" </tr>\n",
|
481 |
-
" <tr>\n",
|
482 |
-
" <th>4</th>\n",
|
483 |
-
" <td>240</td>\n",
|
484 |
-
" <td>The Godfather: Part II</td>\n",
|
485 |
-
" <td>In the continuing saga of the Corleone crime f...</td>\n",
|
486 |
-
" </tr>\n",
|
487 |
-
" <tr>\n",
|
488 |
-
" <th>...</th>\n",
|
489 |
-
" <td>...</td>\n",
|
490 |
-
" <td>...</td>\n",
|
491 |
-
" <td>...</td>\n",
|
492 |
-
" </tr>\n",
|
493 |
-
" <tr>\n",
|
494 |
-
" <th>9995</th>\n",
|
495 |
-
" <td>10196</td>\n",
|
496 |
-
" <td>The Last Airbender</td>\n",
|
497 |
-
" <td>The story follows the adventures of Aang, a yo...</td>\n",
|
498 |
-
" </tr>\n",
|
499 |
-
" <tr>\n",
|
500 |
-
" <th>9996</th>\n",
|
501 |
-
" <td>331446</td>\n",
|
502 |
-
" <td>Sharknado 3: Oh Hell No!</td>\n",
|
503 |
-
" <td>The sharks take bite out of the East Coast whe...</td>\n",
|
504 |
-
" </tr>\n",
|
505 |
-
" <tr>\n",
|
506 |
-
" <th>9997</th>\n",
|
507 |
-
" <td>13995</td>\n",
|
508 |
-
" <td>Captain America</td>\n",
|
509 |
-
" <td>During World War II, a brave, patriotic Americ...</td>\n",
|
510 |
-
" </tr>\n",
|
511 |
-
" <tr>\n",
|
512 |
-
" <th>9998</th>\n",
|
513 |
-
" <td>2312</td>\n",
|
514 |
-
" <td>In the Name of the King: A Dungeon Siege Tale</td>\n",
|
515 |
-
" <td>A man named Farmer sets out to rescue his kidn...</td>\n",
|
516 |
-
" </tr>\n",
|
517 |
-
" <tr>\n",
|
518 |
-
" <th>9999</th>\n",
|
519 |
-
" <td>455957</td>\n",
|
520 |
-
" <td>Domino</td>\n",
|
521 |
-
" <td>Seeking justice for his partner’s murder by an...</td>\n",
|
522 |
-
" </tr>\n",
|
523 |
-
" </tbody>\n",
|
524 |
-
"</table>\n",
|
525 |
-
"<p>10000 rows × 3 columns</p>\n",
|
526 |
-
"</div>"
|
527 |
-
],
|
528 |
-
"text/plain": [
|
529 |
-
" id title \\\n",
|
530 |
-
"0 278 The Shawshank Redemption \n",
|
531 |
-
"1 19404 Dilwale Dulhania Le Jayenge \n",
|
532 |
-
"2 238 The Godfather \n",
|
533 |
-
"3 424 Schindler's List \n",
|
534 |
-
"4 240 The Godfather: Part II \n",
|
535 |
-
"... ... ... \n",
|
536 |
-
"9995 10196 The Last Airbender \n",
|
537 |
-
"9996 331446 Sharknado 3: Oh Hell No! \n",
|
538 |
-
"9997 13995 Captain America \n",
|
539 |
-
"9998 2312 In the Name of the King: A Dungeon Siege Tale \n",
|
540 |
-
"9999 455957 Domino \n",
|
541 |
-
"\n",
|
542 |
-
" tags \n",
|
543 |
-
"0 Framed in the 1940s for the double murder of h... \n",
|
544 |
-
"1 Raj is a rich, carefree, happy-go-lucky second... \n",
|
545 |
-
"2 Spanning the years 1945 to 1955, a chronicle o... \n",
|
546 |
-
"3 The true story of how businessman Oskar Schind... \n",
|
547 |
-
"4 In the continuing saga of the Corleone crime f... \n",
|
548 |
-
"... ... \n",
|
549 |
-
"9995 The story follows the adventures of Aang, a yo... \n",
|
550 |
-
"9996 The sharks take bite out of the East Coast whe... \n",
|
551 |
-
"9997 During World War II, a brave, patriotic Americ... \n",
|
552 |
-
"9998 A man named Farmer sets out to rescue his kidn... \n",
|
553 |
-
"9999 Seeking justice for his partner’s murder by an... \n",
|
554 |
-
"\n",
|
555 |
-
"[10000 rows x 3 columns]"
|
556 |
-
]
|
557 |
-
},
|
558 |
-
"execution_count": 39,
|
559 |
-
"metadata": {},
|
560 |
-
"output_type": "execute_result"
|
561 |
-
}
|
562 |
-
],
|
563 |
-
"source": [
|
564 |
-
"new_movies"
|
565 |
-
]
|
566 |
-
},
|
567 |
-
{
|
568 |
-
"cell_type": "code",
|
569 |
-
"execution_count": 40,
|
570 |
-
"metadata": {},
|
571 |
-
"outputs": [
|
572 |
-
{
|
573 |
-
"name": "stdout",
|
574 |
-
"output_type": "stream",
|
575 |
-
"text": [
|
576 |
-
"Requirement already satisfied: scikit-learn in c:\\users\\shiva\\.conda\\envs\\aienv\\lib\\site-packages (1.6.0)\n",
|
577 |
-
"Requirement already satisfied: numpy>=1.19.5 in c:\\users\\shiva\\.conda\\envs\\aienv\\lib\\site-packages (from scikit-learn) (2.2.1)\n",
|
578 |
-
"Requirement already satisfied: scipy>=1.6.0 in c:\\users\\shiva\\.conda\\envs\\aienv\\lib\\site-packages (from scikit-learn) (1.14.1)\n",
|
579 |
-
"Requirement already satisfied: joblib>=1.2.0 in c:\\users\\shiva\\.conda\\envs\\aienv\\lib\\site-packages (from scikit-learn) (1.4.2)\n",
|
580 |
-
"Requirement already satisfied: threadpoolctl>=3.1.0 in c:\\users\\shiva\\.conda\\envs\\aienv\\lib\\site-packages (from scikit-learn) (3.5.0)\n",
|
581 |
-
"Note: you may need to restart the kernel to use updated packages.\n"
|
582 |
-
]
|
583 |
-
}
|
584 |
-
],
|
585 |
-
"source": [
|
586 |
-
"# Install scikit-learn package\n",
|
587 |
-
"%pip install scikit-learn\n",
|
588 |
-
"\n",
|
589 |
-
"from sklearn.feature_extraction.text import CountVectorizer"
|
590 |
-
]
|
591 |
-
},
|
592 |
-
{
|
593 |
-
"cell_type": "code",
|
594 |
-
"execution_count": 41,
|
595 |
-
"metadata": {},
|
596 |
-
"outputs": [],
|
597 |
-
"source": [
|
598 |
-
"cv=CountVectorizer(max_features=10000 , stop_words='english')"
|
599 |
-
]
|
600 |
-
},
|
601 |
-
{
|
602 |
-
"cell_type": "code",
|
603 |
-
"execution_count": 42,
|
604 |
-
"metadata": {},
|
605 |
-
"outputs": [
|
606 |
-
{
|
607 |
-
"data": {
|
608 |
-
"text/html": [
|
609 |
-
"<style>#sk-container-id-2 {\n",
|
610 |
-
" /* Definition of color scheme common for light and dark mode */\n",
|
611 |
-
" --sklearn-color-text: #000;\n",
|
612 |
-
" --sklearn-color-text-muted: #666;\n",
|
613 |
-
" --sklearn-color-line: gray;\n",
|
614 |
-
" /* Definition of color scheme for unfitted estimators */\n",
|
615 |
-
" --sklearn-color-unfitted-level-0: #fff5e6;\n",
|
616 |
-
" --sklearn-color-unfitted-level-1: #f6e4d2;\n",
|
617 |
-
" --sklearn-color-unfitted-level-2: #ffe0b3;\n",
|
618 |
-
" --sklearn-color-unfitted-level-3: chocolate;\n",
|
619 |
-
" /* Definition of color scheme for fitted estimators */\n",
|
620 |
-
" --sklearn-color-fitted-level-0: #f0f8ff;\n",
|
621 |
-
" --sklearn-color-fitted-level-1: #d4ebff;\n",
|
622 |
-
" --sklearn-color-fitted-level-2: #b3dbfd;\n",
|
623 |
-
" --sklearn-color-fitted-level-3: cornflowerblue;\n",
|
624 |
-
"\n",
|
625 |
-
" /* Specific color for light theme */\n",
|
626 |
-
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
627 |
-
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
|
628 |
-
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
629 |
-
" --sklearn-color-icon: #696969;\n",
|
630 |
-
"\n",
|
631 |
-
" @media (prefers-color-scheme: dark) {\n",
|
632 |
-
" /* Redefinition of color scheme for dark theme */\n",
|
633 |
-
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
634 |
-
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
|
635 |
-
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
636 |
-
" --sklearn-color-icon: #878787;\n",
|
637 |
-
" }\n",
|
638 |
-
"}\n",
|
639 |
-
"\n",
|
640 |
-
"#sk-container-id-2 {\n",
|
641 |
-
" color: var(--sklearn-color-text);\n",
|
642 |
-
"}\n",
|
643 |
-
"\n",
|
644 |
-
"#sk-container-id-2 pre {\n",
|
645 |
-
" padding: 0;\n",
|
646 |
-
"}\n",
|
647 |
-
"\n",
|
648 |
-
"#sk-container-id-2 input.sk-hidden--visually {\n",
|
649 |
-
" border: 0;\n",
|
650 |
-
" clip: rect(1px 1px 1px 1px);\n",
|
651 |
-
" clip: rect(1px, 1px, 1px, 1px);\n",
|
652 |
-
" height: 1px;\n",
|
653 |
-
" margin: -1px;\n",
|
654 |
-
" overflow: hidden;\n",
|
655 |
-
" padding: 0;\n",
|
656 |
-
" position: absolute;\n",
|
657 |
-
" width: 1px;\n",
|
658 |
-
"}\n",
|
659 |
-
"\n",
|
660 |
-
"#sk-container-id-2 div.sk-dashed-wrapped {\n",
|
661 |
-
" border: 1px dashed var(--sklearn-color-line);\n",
|
662 |
-
" margin: 0 0.4em 0.5em 0.4em;\n",
|
663 |
-
" box-sizing: border-box;\n",
|
664 |
-
" padding-bottom: 0.4em;\n",
|
665 |
-
" background-color: var(--sklearn-color-background);\n",
|
666 |
-
"}\n",
|
667 |
-
"\n",
|
668 |
-
"#sk-container-id-2 div.sk-container {\n",
|
669 |
-
" /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
|
670 |
-
" but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
|
671 |
-
" so we also need the `!important` here to be able to override the\n",
|
672 |
-
" default hidden behavior on the sphinx rendered scikit-learn.org.\n",
|
673 |
-
" See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
|
674 |
-
" display: inline-block !important;\n",
|
675 |
-
" position: relative;\n",
|
676 |
-
"}\n",
|
677 |
-
"\n",
|
678 |
-
"#sk-container-id-2 div.sk-text-repr-fallback {\n",
|
679 |
-
" display: none;\n",
|
680 |
-
"}\n",
|
681 |
-
"\n",
|
682 |
-
"div.sk-parallel-item,\n",
|
683 |
-
"div.sk-serial,\n",
|
684 |
-
"div.sk-item {\n",
|
685 |
-
" /* draw centered vertical line to link estimators */\n",
|
686 |
-
" background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
|
687 |
-
" background-size: 2px 100%;\n",
|
688 |
-
" background-repeat: no-repeat;\n",
|
689 |
-
" background-position: center center;\n",
|
690 |
-
"}\n",
|
691 |
-
"\n",
|
692 |
-
"/* Parallel-specific style estimator block */\n",
|
693 |
-
"\n",
|
694 |
-
"#sk-container-id-2 div.sk-parallel-item::after {\n",
|
695 |
-
" content: \"\";\n",
|
696 |
-
" width: 100%;\n",
|
697 |
-
" border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
|
698 |
-
" flex-grow: 1;\n",
|
699 |
-
"}\n",
|
700 |
-
"\n",
|
701 |
-
"#sk-container-id-2 div.sk-parallel {\n",
|
702 |
-
" display: flex;\n",
|
703 |
-
" align-items: stretch;\n",
|
704 |
-
" justify-content: center;\n",
|
705 |
-
" background-color: var(--sklearn-color-background);\n",
|
706 |
-
" position: relative;\n",
|
707 |
-
"}\n",
|
708 |
-
"\n",
|
709 |
-
"#sk-container-id-2 div.sk-parallel-item {\n",
|
710 |
-
" display: flex;\n",
|
711 |
-
" flex-direction: column;\n",
|
712 |
-
"}\n",
|
713 |
-
"\n",
|
714 |
-
"#sk-container-id-2 div.sk-parallel-item:first-child::after {\n",
|
715 |
-
" align-self: flex-end;\n",
|
716 |
-
" width: 50%;\n",
|
717 |
-
"}\n",
|
718 |
-
"\n",
|
719 |
-
"#sk-container-id-2 div.sk-parallel-item:last-child::after {\n",
|
720 |
-
" align-self: flex-start;\n",
|
721 |
-
" width: 50%;\n",
|
722 |
-
"}\n",
|
723 |
-
"\n",
|
724 |
-
"#sk-container-id-2 div.sk-parallel-item:only-child::after {\n",
|
725 |
-
" width: 0;\n",
|
726 |
-
"}\n",
|
727 |
-
"\n",
|
728 |
-
"/* Serial-specific style estimator block */\n",
|
729 |
-
"\n",
|
730 |
-
"#sk-container-id-2 div.sk-serial {\n",
|
731 |
-
" display: flex;\n",
|
732 |
-
" flex-direction: column;\n",
|
733 |
-
" align-items: center;\n",
|
734 |
-
" background-color: var(--sklearn-color-background);\n",
|
735 |
-
" padding-right: 1em;\n",
|
736 |
-
" padding-left: 1em;\n",
|
737 |
-
"}\n",
|
738 |
-
"\n",
|
739 |
-
"\n",
|
740 |
-
"/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
|
741 |
-
"clickable and can be expanded/collapsed.\n",
|
742 |
-
"- Pipeline and ColumnTransformer use this feature and define the default style\n",
|
743 |
-
"- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
|
744 |
-
"*/\n",
|
745 |
-
"\n",
|
746 |
-
"/* Pipeline and ColumnTransformer style (default) */\n",
|
747 |
-
"\n",
|
748 |
-
"#sk-container-id-2 div.sk-toggleable {\n",
|
749 |
-
" /* Default theme specific background. It is overwritten whether we have a\n",
|
750 |
-
" specific estimator or a Pipeline/ColumnTransformer */\n",
|
751 |
-
" background-color: var(--sklearn-color-background);\n",
|
752 |
-
"}\n",
|
753 |
-
"\n",
|
754 |
-
"/* Toggleable label */\n",
|
755 |
-
"#sk-container-id-2 label.sk-toggleable__label {\n",
|
756 |
-
" cursor: pointer;\n",
|
757 |
-
" display: flex;\n",
|
758 |
-
" width: 100%;\n",
|
759 |
-
" margin-bottom: 0;\n",
|
760 |
-
" padding: 0.5em;\n",
|
761 |
-
" box-sizing: border-box;\n",
|
762 |
-
" text-align: center;\n",
|
763 |
-
" align-items: start;\n",
|
764 |
-
" justify-content: space-between;\n",
|
765 |
-
" gap: 0.5em;\n",
|
766 |
-
"}\n",
|
767 |
-
"\n",
|
768 |
-
"#sk-container-id-2 label.sk-toggleable__label .caption {\n",
|
769 |
-
" font-size: 0.6rem;\n",
|
770 |
-
" font-weight: lighter;\n",
|
771 |
-
" color: var(--sklearn-color-text-muted);\n",
|
772 |
-
"}\n",
|
773 |
-
"\n",
|
774 |
-
"#sk-container-id-2 label.sk-toggleable__label-arrow:before {\n",
|
775 |
-
" /* Arrow on the left of the label */\n",
|
776 |
-
" content: \"▸\";\n",
|
777 |
-
" float: left;\n",
|
778 |
-
" margin-right: 0.25em;\n",
|
779 |
-
" color: var(--sklearn-color-icon);\n",
|
780 |
-
"}\n",
|
781 |
-
"\n",
|
782 |
-
"#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {\n",
|
783 |
-
" color: var(--sklearn-color-text);\n",
|
784 |
-
"}\n",
|
785 |
-
"\n",
|
786 |
-
"/* Toggleable content - dropdown */\n",
|
787 |
-
"\n",
|
788 |
-
"#sk-container-id-2 div.sk-toggleable__content {\n",
|
789 |
-
" max-height: 0;\n",
|
790 |
-
" max-width: 0;\n",
|
791 |
-
" overflow: hidden;\n",
|
792 |
-
" text-align: left;\n",
|
793 |
-
" /* unfitted */\n",
|
794 |
-
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
795 |
-
"}\n",
|
796 |
-
"\n",
|
797 |
-
"#sk-container-id-2 div.sk-toggleable__content.fitted {\n",
|
798 |
-
" /* fitted */\n",
|
799 |
-
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
800 |
-
"}\n",
|
801 |
-
"\n",
|
802 |
-
"#sk-container-id-2 div.sk-toggleable__content pre {\n",
|
803 |
-
" margin: 0.2em;\n",
|
804 |
-
" border-radius: 0.25em;\n",
|
805 |
-
" color: var(--sklearn-color-text);\n",
|
806 |
-
" /* unfitted */\n",
|
807 |
-
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
808 |
-
"}\n",
|
809 |
-
"\n",
|
810 |
-
"#sk-container-id-2 div.sk-toggleable__content.fitted pre {\n",
|
811 |
-
" /* unfitted */\n",
|
812 |
-
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
813 |
-
"}\n",
|
814 |
-
"\n",
|
815 |
-
"#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
|
816 |
-
" /* Expand drop-down */\n",
|
817 |
-
" max-height: 200px;\n",
|
818 |
-
" max-width: 100%;\n",
|
819 |
-
" overflow: auto;\n",
|
820 |
-
"}\n",
|
821 |
-
"\n",
|
822 |
-
"#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
|
823 |
-
" content: \"▾\";\n",
|
824 |
-
"}\n",
|
825 |
-
"\n",
|
826 |
-
"/* Pipeline/ColumnTransformer-specific style */\n",
|
827 |
-
"\n",
|
828 |
-
"#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
829 |
-
" color: var(--sklearn-color-text);\n",
|
830 |
-
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
831 |
-
"}\n",
|
832 |
-
"\n",
|
833 |
-
"#sk-container-id-2 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
834 |
-
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
835 |
-
"}\n",
|
836 |
-
"\n",
|
837 |
-
"/* Estimator-specific style */\n",
|
838 |
-
"\n",
|
839 |
-
"/* Colorize estimator box */\n",
|
840 |
-
"#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
841 |
-
" /* unfitted */\n",
|
842 |
-
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
843 |
-
"}\n",
|
844 |
-
"\n",
|
845 |
-
"#sk-container-id-2 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
846 |
-
" /* fitted */\n",
|
847 |
-
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
848 |
-
"}\n",
|
849 |
-
"\n",
|
850 |
-
"#sk-container-id-2 div.sk-label label.sk-toggleable__label,\n",
|
851 |
-
"#sk-container-id-2 div.sk-label label {\n",
|
852 |
-
" /* The background is the default theme color */\n",
|
853 |
-
" color: var(--sklearn-color-text-on-default-background);\n",
|
854 |
-
"}\n",
|
855 |
-
"\n",
|
856 |
-
"/* On hover, darken the color of the background */\n",
|
857 |
-
"#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {\n",
|
858 |
-
" color: var(--sklearn-color-text);\n",
|
859 |
-
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
860 |
-
"}\n",
|
861 |
-
"\n",
|
862 |
-
"/* Label box, darken color on hover, fitted */\n",
|
863 |
-
"#sk-container-id-2 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
|
864 |
-
" color: var(--sklearn-color-text);\n",
|
865 |
-
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
866 |
-
"}\n",
|
867 |
-
"\n",
|
868 |
-
"/* Estimator label */\n",
|
869 |
-
"\n",
|
870 |
-
"#sk-container-id-2 div.sk-label label {\n",
|
871 |
-
" font-family: monospace;\n",
|
872 |
-
" font-weight: bold;\n",
|
873 |
-
" display: inline-block;\n",
|
874 |
-
" line-height: 1.2em;\n",
|
875 |
-
"}\n",
|
876 |
-
"\n",
|
877 |
-
"#sk-container-id-2 div.sk-label-container {\n",
|
878 |
-
" text-align: center;\n",
|
879 |
-
"}\n",
|
880 |
-
"\n",
|
881 |
-
"/* Estimator-specific */\n",
|
882 |
-
"#sk-container-id-2 div.sk-estimator {\n",
|
883 |
-
" font-family: monospace;\n",
|
884 |
-
" border: 1px dotted var(--sklearn-color-border-box);\n",
|
885 |
-
" border-radius: 0.25em;\n",
|
886 |
-
" box-sizing: border-box;\n",
|
887 |
-
" margin-bottom: 0.5em;\n",
|
888 |
-
" /* unfitted */\n",
|
889 |
-
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
890 |
-
"}\n",
|
891 |
-
"\n",
|
892 |
-
"#sk-container-id-2 div.sk-estimator.fitted {\n",
|
893 |
-
" /* fitted */\n",
|
894 |
-
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
895 |
-
"}\n",
|
896 |
-
"\n",
|
897 |
-
"/* on hover */\n",
|
898 |
-
"#sk-container-id-2 div.sk-estimator:hover {\n",
|
899 |
-
" /* unfitted */\n",
|
900 |
-
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
901 |
-
"}\n",
|
902 |
-
"\n",
|
903 |
-
"#sk-container-id-2 div.sk-estimator.fitted:hover {\n",
|
904 |
-
" /* fitted */\n",
|
905 |
-
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
906 |
-
"}\n",
|
907 |
-
"\n",
|
908 |
-
"/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
|
909 |
-
"\n",
|
910 |
-
"/* Common style for \"i\" and \"?\" */\n",
|
911 |
-
"\n",
|
912 |
-
".sk-estimator-doc-link,\n",
|
913 |
-
"a:link.sk-estimator-doc-link,\n",
|
914 |
-
"a:visited.sk-estimator-doc-link {\n",
|
915 |
-
" float: right;\n",
|
916 |
-
" font-size: smaller;\n",
|
917 |
-
" line-height: 1em;\n",
|
918 |
-
" font-family: monospace;\n",
|
919 |
-
" background-color: var(--sklearn-color-background);\n",
|
920 |
-
" border-radius: 1em;\n",
|
921 |
-
" height: 1em;\n",
|
922 |
-
" width: 1em;\n",
|
923 |
-
" text-decoration: none !important;\n",
|
924 |
-
" margin-left: 0.5em;\n",
|
925 |
-
" text-align: center;\n",
|
926 |
-
" /* unfitted */\n",
|
927 |
-
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
928 |
-
" color: var(--sklearn-color-unfitted-level-1);\n",
|
929 |
-
"}\n",
|
930 |
-
"\n",
|
931 |
-
".sk-estimator-doc-link.fitted,\n",
|
932 |
-
"a:link.sk-estimator-doc-link.fitted,\n",
|
933 |
-
"a:visited.sk-estimator-doc-link.fitted {\n",
|
934 |
-
" /* fitted */\n",
|
935 |
-
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
936 |
-
" color: var(--sklearn-color-fitted-level-1);\n",
|
937 |
-
"}\n",
|
938 |
-
"\n",
|
939 |
-
"/* On hover */\n",
|
940 |
-
"div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
|
941 |
-
".sk-estimator-doc-link:hover,\n",
|
942 |
-
"div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
|
943 |
-
".sk-estimator-doc-link:hover {\n",
|
944 |
-
" /* unfitted */\n",
|
945 |
-
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
946 |
-
" color: var(--sklearn-color-background);\n",
|
947 |
-
" text-decoration: none;\n",
|
948 |
-
"}\n",
|
949 |
-
"\n",
|
950 |
-
"div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
|
951 |
-
".sk-estimator-doc-link.fitted:hover,\n",
|
952 |
-
"div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
|
953 |
-
".sk-estimator-doc-link.fitted:hover {\n",
|
954 |
-
" /* fitted */\n",
|
955 |
-
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
956 |
-
" color: var(--sklearn-color-background);\n",
|
957 |
-
" text-decoration: none;\n",
|
958 |
-
"}\n",
|
959 |
-
"\n",
|
960 |
-
"/* Span, style for the box shown on hovering the info icon */\n",
|
961 |
-
".sk-estimator-doc-link span {\n",
|
962 |
-
" display: none;\n",
|
963 |
-
" z-index: 9999;\n",
|
964 |
-
" position: relative;\n",
|
965 |
-
" font-weight: normal;\n",
|
966 |
-
" right: .2ex;\n",
|
967 |
-
" padding: .5ex;\n",
|
968 |
-
" margin: .5ex;\n",
|
969 |
-
" width: min-content;\n",
|
970 |
-
" min-width: 20ex;\n",
|
971 |
-
" max-width: 50ex;\n",
|
972 |
-
" color: var(--sklearn-color-text);\n",
|
973 |
-
" box-shadow: 2pt 2pt 4pt #999;\n",
|
974 |
-
" /* unfitted */\n",
|
975 |
-
" background: var(--sklearn-color-unfitted-level-0);\n",
|
976 |
-
" border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
|
977 |
-
"}\n",
|
978 |
-
"\n",
|
979 |
-
".sk-estimator-doc-link.fitted span {\n",
|
980 |
-
" /* fitted */\n",
|
981 |
-
" background: var(--sklearn-color-fitted-level-0);\n",
|
982 |
-
" border: var(--sklearn-color-fitted-level-3);\n",
|
983 |
-
"}\n",
|
984 |
-
"\n",
|
985 |
-
".sk-estimator-doc-link:hover span {\n",
|
986 |
-
" display: block;\n",
|
987 |
-
"}\n",
|
988 |
-
"\n",
|
989 |
-
"/* \"?\"-specific style due to the `<a>` HTML tag */\n",
|
990 |
-
"\n",
|
991 |
-
"#sk-container-id-2 a.estimator_doc_link {\n",
|
992 |
-
" float: right;\n",
|
993 |
-
" font-size: 1rem;\n",
|
994 |
-
" line-height: 1em;\n",
|
995 |
-
" font-family: monospace;\n",
|
996 |
-
" background-color: var(--sklearn-color-background);\n",
|
997 |
-
" border-radius: 1rem;\n",
|
998 |
-
" height: 1rem;\n",
|
999 |
-
" width: 1rem;\n",
|
1000 |
-
" text-decoration: none;\n",
|
1001 |
-
" /* unfitted */\n",
|
1002 |
-
" color: var(--sklearn-color-unfitted-level-1);\n",
|
1003 |
-
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
1004 |
-
"}\n",
|
1005 |
-
"\n",
|
1006 |
-
"#sk-container-id-2 a.estimator_doc_link.fitted {\n",
|
1007 |
-
" /* fitted */\n",
|
1008 |
-
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
1009 |
-
" color: var(--sklearn-color-fitted-level-1);\n",
|
1010 |
-
"}\n",
|
1011 |
-
"\n",
|
1012 |
-
"/* On hover */\n",
|
1013 |
-
"#sk-container-id-2 a.estimator_doc_link:hover {\n",
|
1014 |
-
" /* unfitted */\n",
|
1015 |
-
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
1016 |
-
" color: var(--sklearn-color-background);\n",
|
1017 |
-
" text-decoration: none;\n",
|
1018 |
-
"}\n",
|
1019 |
-
"\n",
|
1020 |
-
"#sk-container-id-2 a.estimator_doc_link.fitted:hover {\n",
|
1021 |
-
" /* fitted */\n",
|
1022 |
-
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
1023 |
-
"}\n",
|
1024 |
-
"</style><div id=\"sk-container-id-2\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>CountVectorizer(max_features=10000, stop_words='english')</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-2\" type=\"checkbox\" checked><label for=\"sk-estimator-id-2\" class=\"sk-toggleable__label sk-toggleable__label-arrow\"><div><div>CountVectorizer</div></div><div><a class=\"sk-estimator-doc-link \" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.6/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html\">?<span>Documentation for CountVectorizer</span></a><span class=\"sk-estimator-doc-link \">i<span>Not fitted</span></span></div></label><div class=\"sk-toggleable__content \"><pre>CountVectorizer(max_features=10000, stop_words='english')</pre></div> </div></div></div></div>"
|
1025 |
-
],
|
1026 |
-
"text/plain": [
|
1027 |
-
"CountVectorizer(max_features=10000, stop_words='english')"
|
1028 |
-
]
|
1029 |
-
},
|
1030 |
-
"execution_count": 42,
|
1031 |
-
"metadata": {},
|
1032 |
-
"output_type": "execute_result"
|
1033 |
-
}
|
1034 |
-
],
|
1035 |
-
"source": [
|
1036 |
-
"cv"
|
1037 |
-
]
|
1038 |
-
},
|
1039 |
-
{
|
1040 |
-
"cell_type": "code",
|
1041 |
-
"execution_count": 43,
|
1042 |
-
"metadata": {},
|
1043 |
-
"outputs": [],
|
1044 |
-
"source": [
|
1045 |
-
"vector = cv.fit_transform(new_movies['tags'].values.astype('U')).toarray()"
|
1046 |
-
]
|
1047 |
-
},
|
1048 |
-
{
|
1049 |
-
"cell_type": "code",
|
1050 |
-
"execution_count": 44,
|
1051 |
-
"metadata": {},
|
1052 |
-
"outputs": [
|
1053 |
-
{
|
1054 |
-
"data": {
|
1055 |
-
"text/plain": [
|
1056 |
-
"(10000, 10000)"
|
1057 |
-
]
|
1058 |
-
},
|
1059 |
-
"execution_count": 44,
|
1060 |
-
"metadata": {},
|
1061 |
-
"output_type": "execute_result"
|
1062 |
-
}
|
1063 |
-
],
|
1064 |
-
"source": [
|
1065 |
-
"vector.shape"
|
1066 |
-
]
|
1067 |
-
},
|
1068 |
-
{
|
1069 |
-
"cell_type": "code",
|
1070 |
-
"execution_count": 45,
|
1071 |
-
"metadata": {},
|
1072 |
-
"outputs": [],
|
1073 |
-
"source": [
|
1074 |
-
"from sklearn.metrics.pairwise import cosine_similarity"
|
1075 |
-
]
|
1076 |
-
},
|
1077 |
-
{
|
1078 |
-
"cell_type": "code",
|
1079 |
-
"execution_count": 46,
|
1080 |
-
"metadata": {},
|
1081 |
-
"outputs": [],
|
1082 |
-
"source": [
|
1083 |
-
"similarity = cosine_similarity(vector)"
|
1084 |
-
]
|
1085 |
-
},
|
1086 |
-
{
|
1087 |
-
"cell_type": "code",
|
1088 |
-
"execution_count": 47,
|
1089 |
-
"metadata": {},
|
1090 |
-
"outputs": [
|
1091 |
-
{
|
1092 |
-
"data": {
|
1093 |
-
"text/plain": [
|
1094 |
-
"array([[1. , 0.05634362, 0.13041013, ..., 0.07559289, 0.11065667,\n",
|
1095 |
-
" 0.06900656],\n",
|
1096 |
-
" [0.05634362, 1. , 0.07715167, ..., 0. , 0.03636965,\n",
|
1097 |
-
" 0. ],\n",
|
1098 |
-
" [0.13041013, 0.07715167, 1. , ..., 0.02300219, 0.0673435 ,\n",
|
1099 |
-
" 0.09449112],\n",
|
1100 |
-
" ...,\n",
|
1101 |
-
" [0.07559289, 0. , 0.02300219, ..., 1. , 0.03253 ,\n",
|
1102 |
-
" 0.03042903],\n",
|
1103 |
-
" [0.11065667, 0.03636965, 0.0673435 , ..., 0.03253 , 1. ,\n",
|
1104 |
-
" 0.04454354],\n",
|
1105 |
-
" [0.06900656, 0. , 0.09449112, ..., 0.03042903, 0.04454354,\n",
|
1106 |
-
" 1. ]], shape=(10000, 10000))"
|
1107 |
-
]
|
1108 |
-
},
|
1109 |
-
"execution_count": 47,
|
1110 |
-
"metadata": {},
|
1111 |
-
"output_type": "execute_result"
|
1112 |
-
}
|
1113 |
-
],
|
1114 |
-
"source": [
|
1115 |
-
"similarity"
|
1116 |
-
]
|
1117 |
-
},
|
1118 |
-
{
|
1119 |
-
"cell_type": "code",
|
1120 |
-
"execution_count": 48,
|
1121 |
-
"metadata": {},
|
1122 |
-
"outputs": [
|
1123 |
-
{
|
1124 |
-
"data": {
|
1125 |
-
"text/plain": [
|
1126 |
-
"np.int64(2)"
|
1127 |
-
]
|
1128 |
-
},
|
1129 |
-
"execution_count": 48,
|
1130 |
-
"metadata": {},
|
1131 |
-
"output_type": "execute_result"
|
1132 |
-
}
|
1133 |
-
],
|
1134 |
-
"source": [
|
1135 |
-
"new_movies[new_movies['title']==\"The Godfather\"].index[0]"
|
1136 |
-
]
|
1137 |
-
},
|
1138 |
-
{
|
1139 |
-
"cell_type": "code",
|
1140 |
-
"execution_count": 49,
|
1141 |
-
"metadata": {},
|
1142 |
-
"outputs": [
|
1143 |
-
{
|
1144 |
-
"name": "stdout",
|
1145 |
-
"output_type": "stream",
|
1146 |
-
"text": [
|
1147 |
-
"The Godfather\n",
|
1148 |
-
"The Godfather: Part II\n",
|
1149 |
-
"Blood Ties\n",
|
1150 |
-
"Joker\n",
|
1151 |
-
"Bomb City\n"
|
1152 |
-
]
|
1153 |
-
}
|
1154 |
-
],
|
1155 |
-
"source": [
|
1156 |
-
"distance = sorted(list(enumerate(similarity[2])) , reverse=True, key=lambda vector:vector[1])\n",
|
1157 |
-
"for i in distance[0:5]:\n",
|
1158 |
-
" print(new_movies.iloc[i[0]].title)"
|
1159 |
-
]
|
1160 |
-
},
|
1161 |
-
{
|
1162 |
-
"cell_type": "code",
|
1163 |
-
"execution_count": 50,
|
1164 |
-
"metadata": {},
|
1165 |
-
"outputs": [],
|
1166 |
-
"source": [
|
1167 |
-
"def recommend(movies):\n",
|
1168 |
-
" index=new_movies[new_movies['title']==movies].index[0]\n",
|
1169 |
-
" distance = sorted(list(enumerate(similarity[index])), reverse=True, key=lambda vector:vector[1])\n",
|
1170 |
-
" for i in distance[0:5]:\n",
|
1171 |
-
" print(new_movies.iloc[i[0]].title)"
|
1172 |
-
]
|
1173 |
-
},
|
1174 |
-
{
|
1175 |
-
"cell_type": "code",
|
1176 |
-
"execution_count": 51,
|
1177 |
-
"metadata": {},
|
1178 |
-
"outputs": [
|
1179 |
-
{
|
1180 |
-
"name": "stdout",
|
1181 |
-
"output_type": "stream",
|
1182 |
-
"text": [
|
1183 |
-
"Iron Man\n",
|
1184 |
-
"Iron Man 3\n",
|
1185 |
-
"Guardians of the Galaxy Vol. 2\n",
|
1186 |
-
"Avengers: Age of Ultron\n",
|
1187 |
-
"Star Wars: Episode III - Revenge of the Sith\n"
|
1188 |
-
]
|
1189 |
-
}
|
1190 |
-
],
|
1191 |
-
"source": [
|
1192 |
-
"recommend(\"Iron Man\")"
|
1193 |
-
]
|
1194 |
-
},
|
1195 |
-
{
|
1196 |
-
"cell_type": "code",
|
1197 |
-
"execution_count": 52,
|
1198 |
-
"metadata": {},
|
1199 |
-
"outputs": [],
|
1200 |
-
"source": [
|
1201 |
-
"import pickle"
|
1202 |
-
]
|
1203 |
-
},
|
1204 |
-
{
|
1205 |
-
"cell_type": "code",
|
1206 |
-
"execution_count": 53,
|
1207 |
-
"metadata": {},
|
1208 |
-
"outputs": [],
|
1209 |
-
"source": [
|
1210 |
-
"pickle.dump(new_movies , open('movies_list.pkl' , 'wb'))"
|
1211 |
-
]
|
1212 |
-
},
|
1213 |
-
{
|
1214 |
-
"cell_type": "code",
|
1215 |
-
"execution_count": 54,
|
1216 |
-
"metadata": {},
|
1217 |
-
"outputs": [],
|
1218 |
-
"source": [
|
1219 |
-
"pickle.dump(similarity,open('similarity.pkl','wb'))"
|
1220 |
-
]
|
1221 |
-
},
|
1222 |
-
{
|
1223 |
-
"cell_type": "code",
|
1224 |
-
"execution_count": 55,
|
1225 |
-
"metadata": {},
|
1226 |
-
"outputs": [
|
1227 |
-
{
|
1228 |
-
"data": {
|
1229 |
-
"text/html": [
|
1230 |
-
"<div>\n",
|
1231 |
-
"<style scoped>\n",
|
1232 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
1233 |
-
" vertical-align: middle;\n",
|
1234 |
-
" }\n",
|
1235 |
-
"\n",
|
1236 |
-
" .dataframe tbody tr th {\n",
|
1237 |
-
" vertical-align: top;\n",
|
1238 |
-
" }\n",
|
1239 |
-
"\n",
|
1240 |
-
" .dataframe thead th {\n",
|
1241 |
-
" text-align: right;\n",
|
1242 |
-
" }\n",
|
1243 |
-
"</style>\n",
|
1244 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
1245 |
-
" <thead>\n",
|
1246 |
-
" <tr style=\"text-align: right;\">\n",
|
1247 |
-
" <th></th>\n",
|
1248 |
-
" <th>id</th>\n",
|
1249 |
-
" <th>title</th>\n",
|
1250 |
-
" <th>tags</th>\n",
|
1251 |
-
" </tr>\n",
|
1252 |
-
" </thead>\n",
|
1253 |
-
" <tbody>\n",
|
1254 |
-
" <tr>\n",
|
1255 |
-
" <th>0</th>\n",
|
1256 |
-
" <td>278</td>\n",
|
1257 |
-
" <td>The Shawshank Redemption</td>\n",
|
1258 |
-
" <td>Framed in the 1940s for the double murder of h...</td>\n",
|
1259 |
-
" </tr>\n",
|
1260 |
-
" <tr>\n",
|
1261 |
-
" <th>1</th>\n",
|
1262 |
-
" <td>19404</td>\n",
|
1263 |
-
" <td>Dilwale Dulhania Le Jayenge</td>\n",
|
1264 |
-
" <td>Raj is a rich, carefree, happy-go-lucky second...</td>\n",
|
1265 |
-
" </tr>\n",
|
1266 |
-
" <tr>\n",
|
1267 |
-
" <th>2</th>\n",
|
1268 |
-
" <td>238</td>\n",
|
1269 |
-
" <td>The Godfather</td>\n",
|
1270 |
-
" <td>Spanning the years 1945 to 1955, a chronicle o...</td>\n",
|
1271 |
-
" </tr>\n",
|
1272 |
-
" <tr>\n",
|
1273 |
-
" <th>3</th>\n",
|
1274 |
-
" <td>424</td>\n",
|
1275 |
-
" <td>Schindler's List</td>\n",
|
1276 |
-
" <td>The true story of how businessman Oskar Schind...</td>\n",
|
1277 |
-
" </tr>\n",
|
1278 |
-
" <tr>\n",
|
1279 |
-
" <th>4</th>\n",
|
1280 |
-
" <td>240</td>\n",
|
1281 |
-
" <td>The Godfather: Part II</td>\n",
|
1282 |
-
" <td>In the continuing saga of the Corleone crime f...</td>\n",
|
1283 |
-
" </tr>\n",
|
1284 |
-
" <tr>\n",
|
1285 |
-
" <th>...</th>\n",
|
1286 |
-
" <td>...</td>\n",
|
1287 |
-
" <td>...</td>\n",
|
1288 |
-
" <td>...</td>\n",
|
1289 |
-
" </tr>\n",
|
1290 |
-
" <tr>\n",
|
1291 |
-
" <th>9995</th>\n",
|
1292 |
-
" <td>10196</td>\n",
|
1293 |
-
" <td>The Last Airbender</td>\n",
|
1294 |
-
" <td>The story follows the adventures of Aang, a yo...</td>\n",
|
1295 |
-
" </tr>\n",
|
1296 |
-
" <tr>\n",
|
1297 |
-
" <th>9996</th>\n",
|
1298 |
-
" <td>331446</td>\n",
|
1299 |
-
" <td>Sharknado 3: Oh Hell No!</td>\n",
|
1300 |
-
" <td>The sharks take bite out of the East Coast whe...</td>\n",
|
1301 |
-
" </tr>\n",
|
1302 |
-
" <tr>\n",
|
1303 |
-
" <th>9997</th>\n",
|
1304 |
-
" <td>13995</td>\n",
|
1305 |
-
" <td>Captain America</td>\n",
|
1306 |
-
" <td>During World War II, a brave, patriotic Americ...</td>\n",
|
1307 |
-
" </tr>\n",
|
1308 |
-
" <tr>\n",
|
1309 |
-
" <th>9998</th>\n",
|
1310 |
-
" <td>2312</td>\n",
|
1311 |
-
" <td>In the Name of the King: A Dungeon Siege Tale</td>\n",
|
1312 |
-
" <td>A man named Farmer sets out to rescue his kidn...</td>\n",
|
1313 |
-
" </tr>\n",
|
1314 |
-
" <tr>\n",
|
1315 |
-
" <th>9999</th>\n",
|
1316 |
-
" <td>455957</td>\n",
|
1317 |
-
" <td>Domino</td>\n",
|
1318 |
-
" <td>Seeking justice for his partner’s murder by an...</td>\n",
|
1319 |
-
" </tr>\n",
|
1320 |
-
" </tbody>\n",
|
1321 |
-
"</table>\n",
|
1322 |
-
"<p>10000 rows × 3 columns</p>\n",
|
1323 |
-
"</div>"
|
1324 |
-
],
|
1325 |
-
"text/plain": [
|
1326 |
-
" id title \\\n",
|
1327 |
-
"0 278 The Shawshank Redemption \n",
|
1328 |
-
"1 19404 Dilwale Dulhania Le Jayenge \n",
|
1329 |
-
"2 238 The Godfather \n",
|
1330 |
-
"3 424 Schindler's List \n",
|
1331 |
-
"4 240 The Godfather: Part II \n",
|
1332 |
-
"... ... ... \n",
|
1333 |
-
"9995 10196 The Last Airbender \n",
|
1334 |
-
"9996 331446 Sharknado 3: Oh Hell No! \n",
|
1335 |
-
"9997 13995 Captain America \n",
|
1336 |
-
"9998 2312 In the Name of the King: A Dungeon Siege Tale \n",
|
1337 |
-
"9999 455957 Domino \n",
|
1338 |
-
"\n",
|
1339 |
-
" tags \n",
|
1340 |
-
"0 Framed in the 1940s for the double murder of h... \n",
|
1341 |
-
"1 Raj is a rich, carefree, happy-go-lucky second... \n",
|
1342 |
-
"2 Spanning the years 1945 to 1955, a chronicle o... \n",
|
1343 |
-
"3 The true story of how businessman Oskar Schind... \n",
|
1344 |
-
"4 In the continuing saga of the Corleone crime f... \n",
|
1345 |
-
"... ... \n",
|
1346 |
-
"9995 The story follows the adventures of Aang, a yo... \n",
|
1347 |
-
"9996 The sharks take bite out of the East Coast whe... \n",
|
1348 |
-
"9997 During World War II, a brave, patriotic Americ... \n",
|
1349 |
-
"9998 A man named Farmer sets out to rescue his kidn... \n",
|
1350 |
-
"9999 Seeking justice for his partner’s murder by an... \n",
|
1351 |
-
"\n",
|
1352 |
-
"[10000 rows x 3 columns]"
|
1353 |
-
]
|
1354 |
-
},
|
1355 |
-
"execution_count": 55,
|
1356 |
-
"metadata": {},
|
1357 |
-
"output_type": "execute_result"
|
1358 |
-
}
|
1359 |
-
],
|
1360 |
-
"source": [
|
1361 |
-
"pickle.load(open('movies_list.pkl','rb'))"
|
1362 |
-
]
|
1363 |
-
},
|
1364 |
-
{
|
1365 |
-
"cell_type": "code",
|
1366 |
-
"execution_count": null,
|
1367 |
-
"metadata": {},
|
1368 |
-
"outputs": [],
|
1369 |
-
"source": []
|
1370 |
-
}
|
1371 |
-
],
|
1372 |
-
"metadata": {
|
1373 |
-
"kernelspec": {
|
1374 |
-
"display_name": "aienv",
|
1375 |
-
"language": "python",
|
1376 |
-
"name": "python3"
|
1377 |
-
},
|
1378 |
-
"language_info": {
|
1379 |
-
"codemirror_mode": {
|
1380 |
-
"name": "ipython",
|
1381 |
-
"version": 3
|
1382 |
-
},
|
1383 |
-
"file_extension": ".py",
|
1384 |
-
"mimetype": "text/x-python",
|
1385 |
-
"name": "python",
|
1386 |
-
"nbconvert_exporter": "python",
|
1387 |
-
"pygments_lexer": "ipython3",
|
1388 |
-
"version": "3.10.16"
|
1389 |
-
}
|
1390 |
-
},
|
1391 |
-
"nbformat": 4,
|
1392 |
-
"nbformat_minor": 2
|
1393 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Movie-recommendation-system/ssh.py
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
import requests
|
2 |
-
from requests.packages.urllib3.exceptions import InsecureRequestWarning
|
3 |
-
requests.packages.urllib3.disable_warnings(InsecureRequestWarning)
|
4 |
-
|
5 |
-
def fetch_url():
|
6 |
-
url = "https://huggingface.co/spaces/Shiva7706/ML_Movie_recommendation_system"
|
7 |
-
try:
|
8 |
-
response = requests.get(url, verify=False)
|
9 |
-
print(f"Status Code: {response.status_code}")
|
10 |
-
print("Connection successful!")
|
11 |
-
except Exception as e:
|
12 |
-
print(f"Error: {e}")
|
13 |
-
|
14 |
-
if __name__ == "__main__":
|
15 |
-
fetch_url()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Movie-recommendation-system/top10K-TMDB-movies.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|