Spaces:
Build error
Build error
movie recommendation syste,
Browse files- Movie-recommendation-system/README.md +2 -0
- Movie-recommendation-system/app.py +54 -0
- Movie-recommendation-system/app_2.py +51 -0
- Movie-recommendation-system/main.ipynb +1393 -0
- Movie-recommendation-system/requirements.txt +5 -0
- Movie-recommendation-system/ssh.py +15 -0
- Movie-recommendation-system/top10K-TMDB-movies.csv +0 -0
Movie-recommendation-system/README.md
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Movie-recommendation-system
|
| 2 |
+
Movie Recommendation System , My first ML project
|
Movie-recommendation-system/app.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pseudo code
|
| 2 |
+
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import pickle
|
| 5 |
+
import requests
|
| 6 |
+
|
| 7 |
+
movies = pickle.load(open("movies_list.pkl", 'rb'))
|
| 8 |
+
similarity = pickle.load(open("similarity.pkl",'rb'))
|
| 9 |
+
movies_list = movies['title'].values
|
| 10 |
+
st.header("Movie Recommender System")
|
| 11 |
+
selectvalue=st.selectbox("Selcet movie from dropdown", movies_list)
|
| 12 |
+
|
| 13 |
+
def fetch_poster(movie_id):
|
| 14 |
+
try:
|
| 15 |
+
url = "https://api.themoviedb.org/3/movie/{}?api_key=8cfe8dff1a6fff88fe27b573ee65c035&language=en-US".format(movie_id)
|
| 16 |
+
data = requests.get(url)
|
| 17 |
+
data = data.json()
|
| 18 |
+
poster_path = data['poster_path']
|
| 19 |
+
full_path = "https://image.tmdb.org/t/p/w500/" + poster_path
|
| 20 |
+
return full_path
|
| 21 |
+
except requests.exceptions.SSLError:
|
| 22 |
+
# Handle the error gracefully
|
| 23 |
+
st.error("Unable to fetch poster due to SSL verification error")
|
| 24 |
+
return "placeholder_image_url" # Return a default image URL
|
| 25 |
+
|
| 26 |
+
def recommend(movie):
|
| 27 |
+
index=movies[movies['title']==movie].index[0]
|
| 28 |
+
distance = sorted(list(enumerate(similarity[index])), reverse=True, key=lambda vector:vector[1])
|
| 29 |
+
recommend_movie=[]
|
| 30 |
+
recommend_poster=[]
|
| 31 |
+
for i in distance[1:6]:
|
| 32 |
+
movies_id=movies.iloc[i[0]].id
|
| 33 |
+
recommend_movie.append(movies.iloc[i[0]].title)
|
| 34 |
+
recommend_poster.append(fetch_poster(movies_id))
|
| 35 |
+
return recommend_movie, recommend_poster
|
| 36 |
+
|
| 37 |
+
if st.button("Show Recommend"):
|
| 38 |
+
movie_name, movie_poster = recommend(selectvalue)
|
| 39 |
+
col1 , col2, col3, col4, col5 = st.columns(5)
|
| 40 |
+
with col1:
|
| 41 |
+
st.text(movie_name[0])
|
| 42 |
+
st.image(movie_poster[0])
|
| 43 |
+
with col2:
|
| 44 |
+
st.text(movie_name[1])
|
| 45 |
+
st.image(movie_poster[1])
|
| 46 |
+
with col3:
|
| 47 |
+
st.text(movie_name[2])
|
| 48 |
+
st.image(movie_poster[2])
|
| 49 |
+
with col4:
|
| 50 |
+
st.text(movie_name[3])
|
| 51 |
+
st.image(movie_poster[3])
|
| 52 |
+
with col5:
|
| 53 |
+
st.text(movie_name[4])
|
| 54 |
+
st.image(movie_poster[4])
|
Movie-recommendation-system/app_2.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# main code
|
| 2 |
+
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import pickle
|
| 5 |
+
import requests
|
| 6 |
+
|
| 7 |
+
movies = pickle.load(open("movies_list.pkl", 'rb'))
|
| 8 |
+
similarity = pickle.load(open("similarity.pkl",'rb'))
|
| 9 |
+
movies_list = movies['title'].values
|
| 10 |
+
st.header("Movie Recommender System")
|
| 11 |
+
selectvalue = st.selectbox("Select movie from dropdown", movies_list)
|
| 12 |
+
|
| 13 |
+
def fetch_poster(movie_id):
|
| 14 |
+
try:
|
| 15 |
+
url = "https://api.themoviedb.org/3/movie/{}?api_key=8cfe8dff1a6fff88fe27b573ee65c035&language=en-US".format(movie_id)
|
| 16 |
+
# Disablinb SSL verification for development
|
| 17 |
+
data = requests.get(url, verify=False)
|
| 18 |
+
data = data.json()
|
| 19 |
+
poster_path = data['poster_path']
|
| 20 |
+
if poster_path:
|
| 21 |
+
full_path = "https://image.tmdb.org/t/p/w500/" + poster_path
|
| 22 |
+
return full_path
|
| 23 |
+
else:
|
| 24 |
+
st.warning(f"No poster found for movie ID {movie_id}")
|
| 25 |
+
return None
|
| 26 |
+
except Exception as e:
|
| 27 |
+
st.error(f"Error fetching poster: {str(e)}")
|
| 28 |
+
return None
|
| 29 |
+
|
| 30 |
+
def recommend(movie):
|
| 31 |
+
index = movies[movies['title']==movie].index[0]
|
| 32 |
+
distance = sorted(list(enumerate(similarity[index])), reverse=True, key=lambda vector:vector[1])
|
| 33 |
+
recommend_movie = []
|
| 34 |
+
recommend_poster = []
|
| 35 |
+
for i in distance[1:6]:
|
| 36 |
+
movies_id = movies.iloc[i[0]].id
|
| 37 |
+
recommend_movie.append(movies.iloc[i[0]].title)
|
| 38 |
+
poster = fetch_poster(movies_id)
|
| 39 |
+
recommend_poster.append(poster)
|
| 40 |
+
return recommend_movie, recommend_poster
|
| 41 |
+
|
| 42 |
+
if st.button("Show Recommend"):
|
| 43 |
+
movie_name, movie_poster = recommend(selectvalue)
|
| 44 |
+
cols = st.columns(5)
|
| 45 |
+
for idx, (col, name, poster) in enumerate(zip(cols, movie_name, movie_poster)):
|
| 46 |
+
with col:
|
| 47 |
+
st.text(name)
|
| 48 |
+
if poster: # showing image if url exists
|
| 49 |
+
st.image(poster)
|
| 50 |
+
else:
|
| 51 |
+
st.write("No poster available")
|
Movie-recommendation-system/main.ipynb
ADDED
|
@@ -0,0 +1,1393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import pandas as pd\n"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "code",
|
| 14 |
+
"execution_count": 2,
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"movies = pd.read_csv('top10K-TMDB-movies.csv')"
|
| 19 |
+
]
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"cell_type": "code",
|
| 23 |
+
"execution_count": 3,
|
| 24 |
+
"metadata": {},
|
| 25 |
+
"outputs": [
|
| 26 |
+
{
|
| 27 |
+
"data": {
|
| 28 |
+
"text/html": [
|
| 29 |
+
"<div>\n",
|
| 30 |
+
"<style scoped>\n",
|
| 31 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 32 |
+
" vertical-align: middle;\n",
|
| 33 |
+
" }\n",
|
| 34 |
+
"\n",
|
| 35 |
+
" .dataframe tbody tr th {\n",
|
| 36 |
+
" vertical-align: top;\n",
|
| 37 |
+
" }\n",
|
| 38 |
+
"\n",
|
| 39 |
+
" .dataframe thead th {\n",
|
| 40 |
+
" text-align: right;\n",
|
| 41 |
+
" }\n",
|
| 42 |
+
"</style>\n",
|
| 43 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 44 |
+
" <thead>\n",
|
| 45 |
+
" <tr style=\"text-align: right;\">\n",
|
| 46 |
+
" <th></th>\n",
|
| 47 |
+
" <th>id</th>\n",
|
| 48 |
+
" <th>title</th>\n",
|
| 49 |
+
" <th>genre</th>\n",
|
| 50 |
+
" <th>original_language</th>\n",
|
| 51 |
+
" <th>overview</th>\n",
|
| 52 |
+
" <th>popularity</th>\n",
|
| 53 |
+
" <th>release_date</th>\n",
|
| 54 |
+
" <th>vote_average</th>\n",
|
| 55 |
+
" <th>vote_count</th>\n",
|
| 56 |
+
" </tr>\n",
|
| 57 |
+
" </thead>\n",
|
| 58 |
+
" <tbody>\n",
|
| 59 |
+
" <tr>\n",
|
| 60 |
+
" <th>0</th>\n",
|
| 61 |
+
" <td>278</td>\n",
|
| 62 |
+
" <td>The Shawshank Redemption</td>\n",
|
| 63 |
+
" <td>Drama,Crime</td>\n",
|
| 64 |
+
" <td>en</td>\n",
|
| 65 |
+
" <td>Framed in the 1940s for the double murder of h...</td>\n",
|
| 66 |
+
" <td>94.075</td>\n",
|
| 67 |
+
" <td>1994-09-23</td>\n",
|
| 68 |
+
" <td>8.7</td>\n",
|
| 69 |
+
" <td>21862</td>\n",
|
| 70 |
+
" </tr>\n",
|
| 71 |
+
" <tr>\n",
|
| 72 |
+
" <th>1</th>\n",
|
| 73 |
+
" <td>19404</td>\n",
|
| 74 |
+
" <td>Dilwale Dulhania Le Jayenge</td>\n",
|
| 75 |
+
" <td>Comedy,Drama,Romance</td>\n",
|
| 76 |
+
" <td>hi</td>\n",
|
| 77 |
+
" <td>Raj is a rich, carefree, happy-go-lucky second...</td>\n",
|
| 78 |
+
" <td>25.408</td>\n",
|
| 79 |
+
" <td>1995-10-19</td>\n",
|
| 80 |
+
" <td>8.7</td>\n",
|
| 81 |
+
" <td>3731</td>\n",
|
| 82 |
+
" </tr>\n",
|
| 83 |
+
" <tr>\n",
|
| 84 |
+
" <th>2</th>\n",
|
| 85 |
+
" <td>238</td>\n",
|
| 86 |
+
" <td>The Godfather</td>\n",
|
| 87 |
+
" <td>Drama,Crime</td>\n",
|
| 88 |
+
" <td>en</td>\n",
|
| 89 |
+
" <td>Spanning the years 1945 to 1955, a chronicle o...</td>\n",
|
| 90 |
+
" <td>90.585</td>\n",
|
| 91 |
+
" <td>1972-03-14</td>\n",
|
| 92 |
+
" <td>8.7</td>\n",
|
| 93 |
+
" <td>16280</td>\n",
|
| 94 |
+
" </tr>\n",
|
| 95 |
+
" <tr>\n",
|
| 96 |
+
" <th>3</th>\n",
|
| 97 |
+
" <td>424</td>\n",
|
| 98 |
+
" <td>Schindler's List</td>\n",
|
| 99 |
+
" <td>Drama,History,War</td>\n",
|
| 100 |
+
" <td>en</td>\n",
|
| 101 |
+
" <td>The true story of how businessman Oskar Schind...</td>\n",
|
| 102 |
+
" <td>44.761</td>\n",
|
| 103 |
+
" <td>1993-12-15</td>\n",
|
| 104 |
+
" <td>8.6</td>\n",
|
| 105 |
+
" <td>12959</td>\n",
|
| 106 |
+
" </tr>\n",
|
| 107 |
+
" <tr>\n",
|
| 108 |
+
" <th>4</th>\n",
|
| 109 |
+
" <td>240</td>\n",
|
| 110 |
+
" <td>The Godfather: Part II</td>\n",
|
| 111 |
+
" <td>Drama,Crime</td>\n",
|
| 112 |
+
" <td>en</td>\n",
|
| 113 |
+
" <td>In the continuing saga of the Corleone crime f...</td>\n",
|
| 114 |
+
" <td>57.749</td>\n",
|
| 115 |
+
" <td>1974-12-20</td>\n",
|
| 116 |
+
" <td>8.6</td>\n",
|
| 117 |
+
" <td>9811</td>\n",
|
| 118 |
+
" </tr>\n",
|
| 119 |
+
" <tr>\n",
|
| 120 |
+
" <th>5</th>\n",
|
| 121 |
+
" <td>667257</td>\n",
|
| 122 |
+
" <td>Impossible Things</td>\n",
|
| 123 |
+
" <td>Family,Drama</td>\n",
|
| 124 |
+
" <td>es</td>\n",
|
| 125 |
+
" <td>Matilde is a woman who, after the death of her...</td>\n",
|
| 126 |
+
" <td>14.358</td>\n",
|
| 127 |
+
" <td>2021-06-17</td>\n",
|
| 128 |
+
" <td>8.6</td>\n",
|
| 129 |
+
" <td>255</td>\n",
|
| 130 |
+
" </tr>\n",
|
| 131 |
+
" <tr>\n",
|
| 132 |
+
" <th>6</th>\n",
|
| 133 |
+
" <td>129</td>\n",
|
| 134 |
+
" <td>Spirited Away</td>\n",
|
| 135 |
+
" <td>Animation,Family,Fantasy</td>\n",
|
| 136 |
+
" <td>ja</td>\n",
|
| 137 |
+
" <td>A young girl, Chihiro, becomes trapped in a st...</td>\n",
|
| 138 |
+
" <td>92.056</td>\n",
|
| 139 |
+
" <td>2001-07-20</td>\n",
|
| 140 |
+
" <td>8.5</td>\n",
|
| 141 |
+
" <td>13093</td>\n",
|
| 142 |
+
" </tr>\n",
|
| 143 |
+
" <tr>\n",
|
| 144 |
+
" <th>7</th>\n",
|
| 145 |
+
" <td>730154</td>\n",
|
| 146 |
+
" <td>Your Eyes Tell</td>\n",
|
| 147 |
+
" <td>Romance,Drama</td>\n",
|
| 148 |
+
" <td>ja</td>\n",
|
| 149 |
+
" <td>A tragic accident lead to Kaori's blindness, b...</td>\n",
|
| 150 |
+
" <td>51.345</td>\n",
|
| 151 |
+
" <td>2020-10-23</td>\n",
|
| 152 |
+
" <td>8.5</td>\n",
|
| 153 |
+
" <td>339</td>\n",
|
| 154 |
+
" </tr>\n",
|
| 155 |
+
" <tr>\n",
|
| 156 |
+
" <th>8</th>\n",
|
| 157 |
+
" <td>372754</td>\n",
|
| 158 |
+
" <td>Dou kyu sei – Classmates</td>\n",
|
| 159 |
+
" <td>Romance,Animation</td>\n",
|
| 160 |
+
" <td>ja</td>\n",
|
| 161 |
+
" <td>Rihito Sajo, an honor student with a perfect s...</td>\n",
|
| 162 |
+
" <td>14.285</td>\n",
|
| 163 |
+
" <td>2016-02-20</td>\n",
|
| 164 |
+
" <td>8.5</td>\n",
|
| 165 |
+
" <td>239</td>\n",
|
| 166 |
+
" </tr>\n",
|
| 167 |
+
" <tr>\n",
|
| 168 |
+
" <th>9</th>\n",
|
| 169 |
+
" <td>372058</td>\n",
|
| 170 |
+
" <td>Your Name.</td>\n",
|
| 171 |
+
" <td>Romance,Animation,Drama</td>\n",
|
| 172 |
+
" <td>ja</td>\n",
|
| 173 |
+
" <td>High schoolers Mitsuha and Taki are complete s...</td>\n",
|
| 174 |
+
" <td>158.270</td>\n",
|
| 175 |
+
" <td>2016-08-26</td>\n",
|
| 176 |
+
" <td>8.5</td>\n",
|
| 177 |
+
" <td>8895</td>\n",
|
| 178 |
+
" </tr>\n",
|
| 179 |
+
" </tbody>\n",
|
| 180 |
+
"</table>\n",
|
| 181 |
+
"</div>"
|
| 182 |
+
],
|
| 183 |
+
"text/plain": [
|
| 184 |
+
" id title genre \\\n",
|
| 185 |
+
"0 278 The Shawshank Redemption Drama,Crime \n",
|
| 186 |
+
"1 19404 Dilwale Dulhania Le Jayenge Comedy,Drama,Romance \n",
|
| 187 |
+
"2 238 The Godfather Drama,Crime \n",
|
| 188 |
+
"3 424 Schindler's List Drama,History,War \n",
|
| 189 |
+
"4 240 The Godfather: Part II Drama,Crime \n",
|
| 190 |
+
"5 667257 Impossible Things Family,Drama \n",
|
| 191 |
+
"6 129 Spirited Away Animation,Family,Fantasy \n",
|
| 192 |
+
"7 730154 Your Eyes Tell Romance,Drama \n",
|
| 193 |
+
"8 372754 Dou kyu sei – Classmates Romance,Animation \n",
|
| 194 |
+
"9 372058 Your Name. Romance,Animation,Drama \n",
|
| 195 |
+
"\n",
|
| 196 |
+
" original_language overview \\\n",
|
| 197 |
+
"0 en Framed in the 1940s for the double murder of h... \n",
|
| 198 |
+
"1 hi Raj is a rich, carefree, happy-go-lucky second... \n",
|
| 199 |
+
"2 en Spanning the years 1945 to 1955, a chronicle o... \n",
|
| 200 |
+
"3 en The true story of how businessman Oskar Schind... \n",
|
| 201 |
+
"4 en In the continuing saga of the Corleone crime f... \n",
|
| 202 |
+
"5 es Matilde is a woman who, after the death of her... \n",
|
| 203 |
+
"6 ja A young girl, Chihiro, becomes trapped in a st... \n",
|
| 204 |
+
"7 ja A tragic accident lead to Kaori's blindness, b... \n",
|
| 205 |
+
"8 ja Rihito Sajo, an honor student with a perfect s... \n",
|
| 206 |
+
"9 ja High schoolers Mitsuha and Taki are complete s... \n",
|
| 207 |
+
"\n",
|
| 208 |
+
" popularity release_date vote_average vote_count \n",
|
| 209 |
+
"0 94.075 1994-09-23 8.7 21862 \n",
|
| 210 |
+
"1 25.408 1995-10-19 8.7 3731 \n",
|
| 211 |
+
"2 90.585 1972-03-14 8.7 16280 \n",
|
| 212 |
+
"3 44.761 1993-12-15 8.6 12959 \n",
|
| 213 |
+
"4 57.749 1974-12-20 8.6 9811 \n",
|
| 214 |
+
"5 14.358 2021-06-17 8.6 255 \n",
|
| 215 |
+
"6 92.056 2001-07-20 8.5 13093 \n",
|
| 216 |
+
"7 51.345 2020-10-23 8.5 339 \n",
|
| 217 |
+
"8 14.285 2016-02-20 8.5 239 \n",
|
| 218 |
+
"9 158.270 2016-08-26 8.5 8895 "
|
| 219 |
+
]
|
| 220 |
+
},
|
| 221 |
+
"execution_count": 3,
|
| 222 |
+
"metadata": {},
|
| 223 |
+
"output_type": "execute_result"
|
| 224 |
+
}
|
| 225 |
+
],
|
| 226 |
+
"source": [
|
| 227 |
+
"movies.head(10)"
|
| 228 |
+
]
|
| 229 |
+
},
|
| 230 |
+
{
|
| 231 |
+
"cell_type": "code",
|
| 232 |
+
"execution_count": 4,
|
| 233 |
+
"metadata": {},
|
| 234 |
+
"outputs": [
|
| 235 |
+
{
|
| 236 |
+
"data": {
|
| 237 |
+
"text/html": [
|
| 238 |
+
"<div>\n",
|
| 239 |
+
"<style scoped>\n",
|
| 240 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 241 |
+
" vertical-align: middle;\n",
|
| 242 |
+
" }\n",
|
| 243 |
+
"\n",
|
| 244 |
+
" .dataframe tbody tr th {\n",
|
| 245 |
+
" vertical-align: top;\n",
|
| 246 |
+
" }\n",
|
| 247 |
+
"\n",
|
| 248 |
+
" .dataframe thead th {\n",
|
| 249 |
+
" text-align: right;\n",
|
| 250 |
+
" }\n",
|
| 251 |
+
"</style>\n",
|
| 252 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 253 |
+
" <thead>\n",
|
| 254 |
+
" <tr style=\"text-align: right;\">\n",
|
| 255 |
+
" <th></th>\n",
|
| 256 |
+
" <th>id</th>\n",
|
| 257 |
+
" <th>popularity</th>\n",
|
| 258 |
+
" <th>vote_average</th>\n",
|
| 259 |
+
" <th>vote_count</th>\n",
|
| 260 |
+
" </tr>\n",
|
| 261 |
+
" </thead>\n",
|
| 262 |
+
" <tbody>\n",
|
| 263 |
+
" <tr>\n",
|
| 264 |
+
" <th>count</th>\n",
|
| 265 |
+
" <td>10000.000000</td>\n",
|
| 266 |
+
" <td>10000.000000</td>\n",
|
| 267 |
+
" <td>10000.000000</td>\n",
|
| 268 |
+
" <td>10000.000000</td>\n",
|
| 269 |
+
" </tr>\n",
|
| 270 |
+
" <tr>\n",
|
| 271 |
+
" <th>mean</th>\n",
|
| 272 |
+
" <td>161243.505000</td>\n",
|
| 273 |
+
" <td>34.697267</td>\n",
|
| 274 |
+
" <td>6.621150</td>\n",
|
| 275 |
+
" <td>1547.309400</td>\n",
|
| 276 |
+
" </tr>\n",
|
| 277 |
+
" <tr>\n",
|
| 278 |
+
" <th>std</th>\n",
|
| 279 |
+
" <td>211422.046043</td>\n",
|
| 280 |
+
" <td>211.684175</td>\n",
|
| 281 |
+
" <td>0.766231</td>\n",
|
| 282 |
+
" <td>2648.295789</td>\n",
|
| 283 |
+
" </tr>\n",
|
| 284 |
+
" <tr>\n",
|
| 285 |
+
" <th>min</th>\n",
|
| 286 |
+
" <td>5.000000</td>\n",
|
| 287 |
+
" <td>0.600000</td>\n",
|
| 288 |
+
" <td>4.600000</td>\n",
|
| 289 |
+
" <td>200.000000</td>\n",
|
| 290 |
+
" </tr>\n",
|
| 291 |
+
" <tr>\n",
|
| 292 |
+
" <th>25%</th>\n",
|
| 293 |
+
" <td>10127.750000</td>\n",
|
| 294 |
+
" <td>9.154750</td>\n",
|
| 295 |
+
" <td>6.100000</td>\n",
|
| 296 |
+
" <td>315.000000</td>\n",
|
| 297 |
+
" </tr>\n",
|
| 298 |
+
" <tr>\n",
|
| 299 |
+
" <th>50%</th>\n",
|
| 300 |
+
" <td>30002.500000</td>\n",
|
| 301 |
+
" <td>13.637500</td>\n",
|
| 302 |
+
" <td>6.600000</td>\n",
|
| 303 |
+
" <td>583.500000</td>\n",
|
| 304 |
+
" </tr>\n",
|
| 305 |
+
" <tr>\n",
|
| 306 |
+
" <th>75%</th>\n",
|
| 307 |
+
" <td>310133.500000</td>\n",
|
| 308 |
+
" <td>25.651250</td>\n",
|
| 309 |
+
" <td>7.200000</td>\n",
|
| 310 |
+
" <td>1460.000000</td>\n",
|
| 311 |
+
" </tr>\n",
|
| 312 |
+
" <tr>\n",
|
| 313 |
+
" <th>max</th>\n",
|
| 314 |
+
" <td>934761.000000</td>\n",
|
| 315 |
+
" <td>10436.917000</td>\n",
|
| 316 |
+
" <td>8.700000</td>\n",
|
| 317 |
+
" <td>31917.000000</td>\n",
|
| 318 |
+
" </tr>\n",
|
| 319 |
+
" </tbody>\n",
|
| 320 |
+
"</table>\n",
|
| 321 |
+
"</div>"
|
| 322 |
+
],
|
| 323 |
+
"text/plain": [
|
| 324 |
+
" id popularity vote_average vote_count\n",
|
| 325 |
+
"count 10000.000000 10000.000000 10000.000000 10000.000000\n",
|
| 326 |
+
"mean 161243.505000 34.697267 6.621150 1547.309400\n",
|
| 327 |
+
"std 211422.046043 211.684175 0.766231 2648.295789\n",
|
| 328 |
+
"min 5.000000 0.600000 4.600000 200.000000\n",
|
| 329 |
+
"25% 10127.750000 9.154750 6.100000 315.000000\n",
|
| 330 |
+
"50% 30002.500000 13.637500 6.600000 583.500000\n",
|
| 331 |
+
"75% 310133.500000 25.651250 7.200000 1460.000000\n",
|
| 332 |
+
"max 934761.000000 10436.917000 8.700000 31917.000000"
|
| 333 |
+
]
|
| 334 |
+
},
|
| 335 |
+
"execution_count": 4,
|
| 336 |
+
"metadata": {},
|
| 337 |
+
"output_type": "execute_result"
|
| 338 |
+
}
|
| 339 |
+
],
|
| 340 |
+
"source": [
|
| 341 |
+
"movies.describe()"
|
| 342 |
+
]
|
| 343 |
+
},
|
| 344 |
+
{
|
| 345 |
+
"cell_type": "code",
|
| 346 |
+
"execution_count": 5,
|
| 347 |
+
"metadata": {},
|
| 348 |
+
"outputs": [
|
| 349 |
+
{
|
| 350 |
+
"name": "stdout",
|
| 351 |
+
"output_type": "stream",
|
| 352 |
+
"text": [
|
| 353 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
| 354 |
+
"RangeIndex: 10000 entries, 0 to 9999\n",
|
| 355 |
+
"Data columns (total 9 columns):\n",
|
| 356 |
+
" # Column Non-Null Count Dtype \n",
|
| 357 |
+
"--- ------ -------------- ----- \n",
|
| 358 |
+
" 0 id 10000 non-null int64 \n",
|
| 359 |
+
" 1 title 10000 non-null object \n",
|
| 360 |
+
" 2 genre 9997 non-null object \n",
|
| 361 |
+
" 3 original_language 10000 non-null object \n",
|
| 362 |
+
" 4 overview 9987 non-null object \n",
|
| 363 |
+
" 5 popularity 10000 non-null float64\n",
|
| 364 |
+
" 6 release_date 10000 non-null object \n",
|
| 365 |
+
" 7 vote_average 10000 non-null float64\n",
|
| 366 |
+
" 8 vote_count 10000 non-null int64 \n",
|
| 367 |
+
"dtypes: float64(2), int64(2), object(5)\n",
|
| 368 |
+
"memory usage: 703.2+ KB\n"
|
| 369 |
+
]
|
| 370 |
+
}
|
| 371 |
+
],
|
| 372 |
+
"source": [
|
| 373 |
+
"movies.info()"
|
| 374 |
+
]
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"cell_type": "code",
|
| 378 |
+
"execution_count": 6,
|
| 379 |
+
"metadata": {},
|
| 380 |
+
"outputs": [
|
| 381 |
+
{
|
| 382 |
+
"data": {
|
| 383 |
+
"text/plain": [
|
| 384 |
+
"Index(['id', 'title', 'genre', 'original_language', 'overview', 'popularity',\n",
|
| 385 |
+
" 'release_date', 'vote_average', 'vote_count'],\n",
|
| 386 |
+
" dtype='object')"
|
| 387 |
+
]
|
| 388 |
+
},
|
| 389 |
+
"execution_count": 6,
|
| 390 |
+
"metadata": {},
|
| 391 |
+
"output_type": "execute_result"
|
| 392 |
+
}
|
| 393 |
+
],
|
| 394 |
+
"source": [
|
| 395 |
+
"movies.columns"
|
| 396 |
+
]
|
| 397 |
+
},
|
| 398 |
+
{
|
| 399 |
+
"cell_type": "code",
|
| 400 |
+
"execution_count": 36,
|
| 401 |
+
"metadata": {},
|
| 402 |
+
"outputs": [],
|
| 403 |
+
"source": [
|
| 404 |
+
"movies=movies[['id','title','overview','genre']]"
|
| 405 |
+
]
|
| 406 |
+
},
|
| 407 |
+
{
|
| 408 |
+
"cell_type": "code",
|
| 409 |
+
"execution_count": 37,
|
| 410 |
+
"metadata": {},
|
| 411 |
+
"outputs": [],
|
| 412 |
+
"source": [
|
| 413 |
+
"movies['tags']=movies['overview']+movies['genre']"
|
| 414 |
+
]
|
| 415 |
+
},
|
| 416 |
+
{
|
| 417 |
+
"cell_type": "code",
|
| 418 |
+
"execution_count": 38,
|
| 419 |
+
"metadata": {},
|
| 420 |
+
"outputs": [],
|
| 421 |
+
"source": [
|
| 422 |
+
"new_movies = movies.drop(columns=['overview','genre'])"
|
| 423 |
+
]
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"cell_type": "code",
|
| 427 |
+
"execution_count": 39,
|
| 428 |
+
"metadata": {},
|
| 429 |
+
"outputs": [
|
| 430 |
+
{
|
| 431 |
+
"data": {
|
| 432 |
+
"text/html": [
|
| 433 |
+
"<div>\n",
|
| 434 |
+
"<style scoped>\n",
|
| 435 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 436 |
+
" vertical-align: middle;\n",
|
| 437 |
+
" }\n",
|
| 438 |
+
"\n",
|
| 439 |
+
" .dataframe tbody tr th {\n",
|
| 440 |
+
" vertical-align: top;\n",
|
| 441 |
+
" }\n",
|
| 442 |
+
"\n",
|
| 443 |
+
" .dataframe thead th {\n",
|
| 444 |
+
" text-align: right;\n",
|
| 445 |
+
" }\n",
|
| 446 |
+
"</style>\n",
|
| 447 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 448 |
+
" <thead>\n",
|
| 449 |
+
" <tr style=\"text-align: right;\">\n",
|
| 450 |
+
" <th></th>\n",
|
| 451 |
+
" <th>id</th>\n",
|
| 452 |
+
" <th>title</th>\n",
|
| 453 |
+
" <th>tags</th>\n",
|
| 454 |
+
" </tr>\n",
|
| 455 |
+
" </thead>\n",
|
| 456 |
+
" <tbody>\n",
|
| 457 |
+
" <tr>\n",
|
| 458 |
+
" <th>0</th>\n",
|
| 459 |
+
" <td>278</td>\n",
|
| 460 |
+
" <td>The Shawshank Redemption</td>\n",
|
| 461 |
+
" <td>Framed in the 1940s for the double murder of h...</td>\n",
|
| 462 |
+
" </tr>\n",
|
| 463 |
+
" <tr>\n",
|
| 464 |
+
" <th>1</th>\n",
|
| 465 |
+
" <td>19404</td>\n",
|
| 466 |
+
" <td>Dilwale Dulhania Le Jayenge</td>\n",
|
| 467 |
+
" <td>Raj is a rich, carefree, happy-go-lucky second...</td>\n",
|
| 468 |
+
" </tr>\n",
|
| 469 |
+
" <tr>\n",
|
| 470 |
+
" <th>2</th>\n",
|
| 471 |
+
" <td>238</td>\n",
|
| 472 |
+
" <td>The Godfather</td>\n",
|
| 473 |
+
" <td>Spanning the years 1945 to 1955, a chronicle o...</td>\n",
|
| 474 |
+
" </tr>\n",
|
| 475 |
+
" <tr>\n",
|
| 476 |
+
" <th>3</th>\n",
|
| 477 |
+
" <td>424</td>\n",
|
| 478 |
+
" <td>Schindler's List</td>\n",
|
| 479 |
+
" <td>The true story of how businessman Oskar Schind...</td>\n",
|
| 480 |
+
" </tr>\n",
|
| 481 |
+
" <tr>\n",
|
| 482 |
+
" <th>4</th>\n",
|
| 483 |
+
" <td>240</td>\n",
|
| 484 |
+
" <td>The Godfather: Part II</td>\n",
|
| 485 |
+
" <td>In the continuing saga of the Corleone crime f...</td>\n",
|
| 486 |
+
" </tr>\n",
|
| 487 |
+
" <tr>\n",
|
| 488 |
+
" <th>...</th>\n",
|
| 489 |
+
" <td>...</td>\n",
|
| 490 |
+
" <td>...</td>\n",
|
| 491 |
+
" <td>...</td>\n",
|
| 492 |
+
" </tr>\n",
|
| 493 |
+
" <tr>\n",
|
| 494 |
+
" <th>9995</th>\n",
|
| 495 |
+
" <td>10196</td>\n",
|
| 496 |
+
" <td>The Last Airbender</td>\n",
|
| 497 |
+
" <td>The story follows the adventures of Aang, a yo...</td>\n",
|
| 498 |
+
" </tr>\n",
|
| 499 |
+
" <tr>\n",
|
| 500 |
+
" <th>9996</th>\n",
|
| 501 |
+
" <td>331446</td>\n",
|
| 502 |
+
" <td>Sharknado 3: Oh Hell No!</td>\n",
|
| 503 |
+
" <td>The sharks take bite out of the East Coast whe...</td>\n",
|
| 504 |
+
" </tr>\n",
|
| 505 |
+
" <tr>\n",
|
| 506 |
+
" <th>9997</th>\n",
|
| 507 |
+
" <td>13995</td>\n",
|
| 508 |
+
" <td>Captain America</td>\n",
|
| 509 |
+
" <td>During World War II, a brave, patriotic Americ...</td>\n",
|
| 510 |
+
" </tr>\n",
|
| 511 |
+
" <tr>\n",
|
| 512 |
+
" <th>9998</th>\n",
|
| 513 |
+
" <td>2312</td>\n",
|
| 514 |
+
" <td>In the Name of the King: A Dungeon Siege Tale</td>\n",
|
| 515 |
+
" <td>A man named Farmer sets out to rescue his kidn...</td>\n",
|
| 516 |
+
" </tr>\n",
|
| 517 |
+
" <tr>\n",
|
| 518 |
+
" <th>9999</th>\n",
|
| 519 |
+
" <td>455957</td>\n",
|
| 520 |
+
" <td>Domino</td>\n",
|
| 521 |
+
" <td>Seeking justice for his partner’s murder by an...</td>\n",
|
| 522 |
+
" </tr>\n",
|
| 523 |
+
" </tbody>\n",
|
| 524 |
+
"</table>\n",
|
| 525 |
+
"<p>10000 rows × 3 columns</p>\n",
|
| 526 |
+
"</div>"
|
| 527 |
+
],
|
| 528 |
+
"text/plain": [
|
| 529 |
+
" id title \\\n",
|
| 530 |
+
"0 278 The Shawshank Redemption \n",
|
| 531 |
+
"1 19404 Dilwale Dulhania Le Jayenge \n",
|
| 532 |
+
"2 238 The Godfather \n",
|
| 533 |
+
"3 424 Schindler's List \n",
|
| 534 |
+
"4 240 The Godfather: Part II \n",
|
| 535 |
+
"... ... ... \n",
|
| 536 |
+
"9995 10196 The Last Airbender \n",
|
| 537 |
+
"9996 331446 Sharknado 3: Oh Hell No! \n",
|
| 538 |
+
"9997 13995 Captain America \n",
|
| 539 |
+
"9998 2312 In the Name of the King: A Dungeon Siege Tale \n",
|
| 540 |
+
"9999 455957 Domino \n",
|
| 541 |
+
"\n",
|
| 542 |
+
" tags \n",
|
| 543 |
+
"0 Framed in the 1940s for the double murder of h... \n",
|
| 544 |
+
"1 Raj is a rich, carefree, happy-go-lucky second... \n",
|
| 545 |
+
"2 Spanning the years 1945 to 1955, a chronicle o... \n",
|
| 546 |
+
"3 The true story of how businessman Oskar Schind... \n",
|
| 547 |
+
"4 In the continuing saga of the Corleone crime f... \n",
|
| 548 |
+
"... ... \n",
|
| 549 |
+
"9995 The story follows the adventures of Aang, a yo... \n",
|
| 550 |
+
"9996 The sharks take bite out of the East Coast whe... \n",
|
| 551 |
+
"9997 During World War II, a brave, patriotic Americ... \n",
|
| 552 |
+
"9998 A man named Farmer sets out to rescue his kidn... \n",
|
| 553 |
+
"9999 Seeking justice for his partner’s murder by an... \n",
|
| 554 |
+
"\n",
|
| 555 |
+
"[10000 rows x 3 columns]"
|
| 556 |
+
]
|
| 557 |
+
},
|
| 558 |
+
"execution_count": 39,
|
| 559 |
+
"metadata": {},
|
| 560 |
+
"output_type": "execute_result"
|
| 561 |
+
}
|
| 562 |
+
],
|
| 563 |
+
"source": [
|
| 564 |
+
"new_movies"
|
| 565 |
+
]
|
| 566 |
+
},
|
| 567 |
+
{
|
| 568 |
+
"cell_type": "code",
|
| 569 |
+
"execution_count": 40,
|
| 570 |
+
"metadata": {},
|
| 571 |
+
"outputs": [
|
| 572 |
+
{
|
| 573 |
+
"name": "stdout",
|
| 574 |
+
"output_type": "stream",
|
| 575 |
+
"text": [
|
| 576 |
+
"Requirement already satisfied: scikit-learn in c:\\users\\shiva\\.conda\\envs\\aienv\\lib\\site-packages (1.6.0)\n",
|
| 577 |
+
"Requirement already satisfied: numpy>=1.19.5 in c:\\users\\shiva\\.conda\\envs\\aienv\\lib\\site-packages (from scikit-learn) (2.2.1)\n",
|
| 578 |
+
"Requirement already satisfied: scipy>=1.6.0 in c:\\users\\shiva\\.conda\\envs\\aienv\\lib\\site-packages (from scikit-learn) (1.14.1)\n",
|
| 579 |
+
"Requirement already satisfied: joblib>=1.2.0 in c:\\users\\shiva\\.conda\\envs\\aienv\\lib\\site-packages (from scikit-learn) (1.4.2)\n",
|
| 580 |
+
"Requirement already satisfied: threadpoolctl>=3.1.0 in c:\\users\\shiva\\.conda\\envs\\aienv\\lib\\site-packages (from scikit-learn) (3.5.0)\n",
|
| 581 |
+
"Note: you may need to restart the kernel to use updated packages.\n"
|
| 582 |
+
]
|
| 583 |
+
}
|
| 584 |
+
],
|
| 585 |
+
"source": [
|
| 586 |
+
"# Install scikit-learn package\n",
|
| 587 |
+
"%pip install scikit-learn\n",
|
| 588 |
+
"\n",
|
| 589 |
+
"from sklearn.feature_extraction.text import CountVectorizer"
|
| 590 |
+
]
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"cell_type": "code",
|
| 594 |
+
"execution_count": 41,
|
| 595 |
+
"metadata": {},
|
| 596 |
+
"outputs": [],
|
| 597 |
+
"source": [
|
| 598 |
+
"cv=CountVectorizer(max_features=10000 , stop_words='english')"
|
| 599 |
+
]
|
| 600 |
+
},
|
| 601 |
+
{
|
| 602 |
+
"cell_type": "code",
|
| 603 |
+
"execution_count": 42,
|
| 604 |
+
"metadata": {},
|
| 605 |
+
"outputs": [
|
| 606 |
+
{
|
| 607 |
+
"data": {
|
| 608 |
+
"text/html": [
|
| 609 |
+
"<style>#sk-container-id-2 {\n",
|
| 610 |
+
" /* Definition of color scheme common for light and dark mode */\n",
|
| 611 |
+
" --sklearn-color-text: #000;\n",
|
| 612 |
+
" --sklearn-color-text-muted: #666;\n",
|
| 613 |
+
" --sklearn-color-line: gray;\n",
|
| 614 |
+
" /* Definition of color scheme for unfitted estimators */\n",
|
| 615 |
+
" --sklearn-color-unfitted-level-0: #fff5e6;\n",
|
| 616 |
+
" --sklearn-color-unfitted-level-1: #f6e4d2;\n",
|
| 617 |
+
" --sklearn-color-unfitted-level-2: #ffe0b3;\n",
|
| 618 |
+
" --sklearn-color-unfitted-level-3: chocolate;\n",
|
| 619 |
+
" /* Definition of color scheme for fitted estimators */\n",
|
| 620 |
+
" --sklearn-color-fitted-level-0: #f0f8ff;\n",
|
| 621 |
+
" --sklearn-color-fitted-level-1: #d4ebff;\n",
|
| 622 |
+
" --sklearn-color-fitted-level-2: #b3dbfd;\n",
|
| 623 |
+
" --sklearn-color-fitted-level-3: cornflowerblue;\n",
|
| 624 |
+
"\n",
|
| 625 |
+
" /* Specific color for light theme */\n",
|
| 626 |
+
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
| 627 |
+
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
|
| 628 |
+
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
| 629 |
+
" --sklearn-color-icon: #696969;\n",
|
| 630 |
+
"\n",
|
| 631 |
+
" @media (prefers-color-scheme: dark) {\n",
|
| 632 |
+
" /* Redefinition of color scheme for dark theme */\n",
|
| 633 |
+
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
| 634 |
+
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
|
| 635 |
+
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
| 636 |
+
" --sklearn-color-icon: #878787;\n",
|
| 637 |
+
" }\n",
|
| 638 |
+
"}\n",
|
| 639 |
+
"\n",
|
| 640 |
+
"#sk-container-id-2 {\n",
|
| 641 |
+
" color: var(--sklearn-color-text);\n",
|
| 642 |
+
"}\n",
|
| 643 |
+
"\n",
|
| 644 |
+
"#sk-container-id-2 pre {\n",
|
| 645 |
+
" padding: 0;\n",
|
| 646 |
+
"}\n",
|
| 647 |
+
"\n",
|
| 648 |
+
"#sk-container-id-2 input.sk-hidden--visually {\n",
|
| 649 |
+
" border: 0;\n",
|
| 650 |
+
" clip: rect(1px 1px 1px 1px);\n",
|
| 651 |
+
" clip: rect(1px, 1px, 1px, 1px);\n",
|
| 652 |
+
" height: 1px;\n",
|
| 653 |
+
" margin: -1px;\n",
|
| 654 |
+
" overflow: hidden;\n",
|
| 655 |
+
" padding: 0;\n",
|
| 656 |
+
" position: absolute;\n",
|
| 657 |
+
" width: 1px;\n",
|
| 658 |
+
"}\n",
|
| 659 |
+
"\n",
|
| 660 |
+
"#sk-container-id-2 div.sk-dashed-wrapped {\n",
|
| 661 |
+
" border: 1px dashed var(--sklearn-color-line);\n",
|
| 662 |
+
" margin: 0 0.4em 0.5em 0.4em;\n",
|
| 663 |
+
" box-sizing: border-box;\n",
|
| 664 |
+
" padding-bottom: 0.4em;\n",
|
| 665 |
+
" background-color: var(--sklearn-color-background);\n",
|
| 666 |
+
"}\n",
|
| 667 |
+
"\n",
|
| 668 |
+
"#sk-container-id-2 div.sk-container {\n",
|
| 669 |
+
" /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
|
| 670 |
+
" but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
|
| 671 |
+
" so we also need the `!important` here to be able to override the\n",
|
| 672 |
+
" default hidden behavior on the sphinx rendered scikit-learn.org.\n",
|
| 673 |
+
" See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
|
| 674 |
+
" display: inline-block !important;\n",
|
| 675 |
+
" position: relative;\n",
|
| 676 |
+
"}\n",
|
| 677 |
+
"\n",
|
| 678 |
+
"#sk-container-id-2 div.sk-text-repr-fallback {\n",
|
| 679 |
+
" display: none;\n",
|
| 680 |
+
"}\n",
|
| 681 |
+
"\n",
|
| 682 |
+
"div.sk-parallel-item,\n",
|
| 683 |
+
"div.sk-serial,\n",
|
| 684 |
+
"div.sk-item {\n",
|
| 685 |
+
" /* draw centered vertical line to link estimators */\n",
|
| 686 |
+
" background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
|
| 687 |
+
" background-size: 2px 100%;\n",
|
| 688 |
+
" background-repeat: no-repeat;\n",
|
| 689 |
+
" background-position: center center;\n",
|
| 690 |
+
"}\n",
|
| 691 |
+
"\n",
|
| 692 |
+
"/* Parallel-specific style estimator block */\n",
|
| 693 |
+
"\n",
|
| 694 |
+
"#sk-container-id-2 div.sk-parallel-item::after {\n",
|
| 695 |
+
" content: \"\";\n",
|
| 696 |
+
" width: 100%;\n",
|
| 697 |
+
" border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
|
| 698 |
+
" flex-grow: 1;\n",
|
| 699 |
+
"}\n",
|
| 700 |
+
"\n",
|
| 701 |
+
"#sk-container-id-2 div.sk-parallel {\n",
|
| 702 |
+
" display: flex;\n",
|
| 703 |
+
" align-items: stretch;\n",
|
| 704 |
+
" justify-content: center;\n",
|
| 705 |
+
" background-color: var(--sklearn-color-background);\n",
|
| 706 |
+
" position: relative;\n",
|
| 707 |
+
"}\n",
|
| 708 |
+
"\n",
|
| 709 |
+
"#sk-container-id-2 div.sk-parallel-item {\n",
|
| 710 |
+
" display: flex;\n",
|
| 711 |
+
" flex-direction: column;\n",
|
| 712 |
+
"}\n",
|
| 713 |
+
"\n",
|
| 714 |
+
"#sk-container-id-2 div.sk-parallel-item:first-child::after {\n",
|
| 715 |
+
" align-self: flex-end;\n",
|
| 716 |
+
" width: 50%;\n",
|
| 717 |
+
"}\n",
|
| 718 |
+
"\n",
|
| 719 |
+
"#sk-container-id-2 div.sk-parallel-item:last-child::after {\n",
|
| 720 |
+
" align-self: flex-start;\n",
|
| 721 |
+
" width: 50%;\n",
|
| 722 |
+
"}\n",
|
| 723 |
+
"\n",
|
| 724 |
+
"#sk-container-id-2 div.sk-parallel-item:only-child::after {\n",
|
| 725 |
+
" width: 0;\n",
|
| 726 |
+
"}\n",
|
| 727 |
+
"\n",
|
| 728 |
+
"/* Serial-specific style estimator block */\n",
|
| 729 |
+
"\n",
|
| 730 |
+
"#sk-container-id-2 div.sk-serial {\n",
|
| 731 |
+
" display: flex;\n",
|
| 732 |
+
" flex-direction: column;\n",
|
| 733 |
+
" align-items: center;\n",
|
| 734 |
+
" background-color: var(--sklearn-color-background);\n",
|
| 735 |
+
" padding-right: 1em;\n",
|
| 736 |
+
" padding-left: 1em;\n",
|
| 737 |
+
"}\n",
|
| 738 |
+
"\n",
|
| 739 |
+
"\n",
|
| 740 |
+
"/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
|
| 741 |
+
"clickable and can be expanded/collapsed.\n",
|
| 742 |
+
"- Pipeline and ColumnTransformer use this feature and define the default style\n",
|
| 743 |
+
"- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
|
| 744 |
+
"*/\n",
|
| 745 |
+
"\n",
|
| 746 |
+
"/* Pipeline and ColumnTransformer style (default) */\n",
|
| 747 |
+
"\n",
|
| 748 |
+
"#sk-container-id-2 div.sk-toggleable {\n",
|
| 749 |
+
" /* Default theme specific background. It is overwritten whether we have a\n",
|
| 750 |
+
" specific estimator or a Pipeline/ColumnTransformer */\n",
|
| 751 |
+
" background-color: var(--sklearn-color-background);\n",
|
| 752 |
+
"}\n",
|
| 753 |
+
"\n",
|
| 754 |
+
"/* Toggleable label */\n",
|
| 755 |
+
"#sk-container-id-2 label.sk-toggleable__label {\n",
|
| 756 |
+
" cursor: pointer;\n",
|
| 757 |
+
" display: flex;\n",
|
| 758 |
+
" width: 100%;\n",
|
| 759 |
+
" margin-bottom: 0;\n",
|
| 760 |
+
" padding: 0.5em;\n",
|
| 761 |
+
" box-sizing: border-box;\n",
|
| 762 |
+
" text-align: center;\n",
|
| 763 |
+
" align-items: start;\n",
|
| 764 |
+
" justify-content: space-between;\n",
|
| 765 |
+
" gap: 0.5em;\n",
|
| 766 |
+
"}\n",
|
| 767 |
+
"\n",
|
| 768 |
+
"#sk-container-id-2 label.sk-toggleable__label .caption {\n",
|
| 769 |
+
" font-size: 0.6rem;\n",
|
| 770 |
+
" font-weight: lighter;\n",
|
| 771 |
+
" color: var(--sklearn-color-text-muted);\n",
|
| 772 |
+
"}\n",
|
| 773 |
+
"\n",
|
| 774 |
+
"#sk-container-id-2 label.sk-toggleable__label-arrow:before {\n",
|
| 775 |
+
" /* Arrow on the left of the label */\n",
|
| 776 |
+
" content: \"▸\";\n",
|
| 777 |
+
" float: left;\n",
|
| 778 |
+
" margin-right: 0.25em;\n",
|
| 779 |
+
" color: var(--sklearn-color-icon);\n",
|
| 780 |
+
"}\n",
|
| 781 |
+
"\n",
|
| 782 |
+
"#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {\n",
|
| 783 |
+
" color: var(--sklearn-color-text);\n",
|
| 784 |
+
"}\n",
|
| 785 |
+
"\n",
|
| 786 |
+
"/* Toggleable content - dropdown */\n",
|
| 787 |
+
"\n",
|
| 788 |
+
"#sk-container-id-2 div.sk-toggleable__content {\n",
|
| 789 |
+
" max-height: 0;\n",
|
| 790 |
+
" max-width: 0;\n",
|
| 791 |
+
" overflow: hidden;\n",
|
| 792 |
+
" text-align: left;\n",
|
| 793 |
+
" /* unfitted */\n",
|
| 794 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
| 795 |
+
"}\n",
|
| 796 |
+
"\n",
|
| 797 |
+
"#sk-container-id-2 div.sk-toggleable__content.fitted {\n",
|
| 798 |
+
" /* fitted */\n",
|
| 799 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
| 800 |
+
"}\n",
|
| 801 |
+
"\n",
|
| 802 |
+
"#sk-container-id-2 div.sk-toggleable__content pre {\n",
|
| 803 |
+
" margin: 0.2em;\n",
|
| 804 |
+
" border-radius: 0.25em;\n",
|
| 805 |
+
" color: var(--sklearn-color-text);\n",
|
| 806 |
+
" /* unfitted */\n",
|
| 807 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
| 808 |
+
"}\n",
|
| 809 |
+
"\n",
|
| 810 |
+
"#sk-container-id-2 div.sk-toggleable__content.fitted pre {\n",
|
| 811 |
+
" /* unfitted */\n",
|
| 812 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
| 813 |
+
"}\n",
|
| 814 |
+
"\n",
|
| 815 |
+
"#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
|
| 816 |
+
" /* Expand drop-down */\n",
|
| 817 |
+
" max-height: 200px;\n",
|
| 818 |
+
" max-width: 100%;\n",
|
| 819 |
+
" overflow: auto;\n",
|
| 820 |
+
"}\n",
|
| 821 |
+
"\n",
|
| 822 |
+
"#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
|
| 823 |
+
" content: \"▾\";\n",
|
| 824 |
+
"}\n",
|
| 825 |
+
"\n",
|
| 826 |
+
"/* Pipeline/ColumnTransformer-specific style */\n",
|
| 827 |
+
"\n",
|
| 828 |
+
"#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
| 829 |
+
" color: var(--sklearn-color-text);\n",
|
| 830 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
| 831 |
+
"}\n",
|
| 832 |
+
"\n",
|
| 833 |
+
"#sk-container-id-2 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
| 834 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
| 835 |
+
"}\n",
|
| 836 |
+
"\n",
|
| 837 |
+
"/* Estimator-specific style */\n",
|
| 838 |
+
"\n",
|
| 839 |
+
"/* Colorize estimator box */\n",
|
| 840 |
+
"#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
| 841 |
+
" /* unfitted */\n",
|
| 842 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
| 843 |
+
"}\n",
|
| 844 |
+
"\n",
|
| 845 |
+
"#sk-container-id-2 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
| 846 |
+
" /* fitted */\n",
|
| 847 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
| 848 |
+
"}\n",
|
| 849 |
+
"\n",
|
| 850 |
+
"#sk-container-id-2 div.sk-label label.sk-toggleable__label,\n",
|
| 851 |
+
"#sk-container-id-2 div.sk-label label {\n",
|
| 852 |
+
" /* The background is the default theme color */\n",
|
| 853 |
+
" color: var(--sklearn-color-text-on-default-background);\n",
|
| 854 |
+
"}\n",
|
| 855 |
+
"\n",
|
| 856 |
+
"/* On hover, darken the color of the background */\n",
|
| 857 |
+
"#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {\n",
|
| 858 |
+
" color: var(--sklearn-color-text);\n",
|
| 859 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
| 860 |
+
"}\n",
|
| 861 |
+
"\n",
|
| 862 |
+
"/* Label box, darken color on hover, fitted */\n",
|
| 863 |
+
"#sk-container-id-2 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
|
| 864 |
+
" color: var(--sklearn-color-text);\n",
|
| 865 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
| 866 |
+
"}\n",
|
| 867 |
+
"\n",
|
| 868 |
+
"/* Estimator label */\n",
|
| 869 |
+
"\n",
|
| 870 |
+
"#sk-container-id-2 div.sk-label label {\n",
|
| 871 |
+
" font-family: monospace;\n",
|
| 872 |
+
" font-weight: bold;\n",
|
| 873 |
+
" display: inline-block;\n",
|
| 874 |
+
" line-height: 1.2em;\n",
|
| 875 |
+
"}\n",
|
| 876 |
+
"\n",
|
| 877 |
+
"#sk-container-id-2 div.sk-label-container {\n",
|
| 878 |
+
" text-align: center;\n",
|
| 879 |
+
"}\n",
|
| 880 |
+
"\n",
|
| 881 |
+
"/* Estimator-specific */\n",
|
| 882 |
+
"#sk-container-id-2 div.sk-estimator {\n",
|
| 883 |
+
" font-family: monospace;\n",
|
| 884 |
+
" border: 1px dotted var(--sklearn-color-border-box);\n",
|
| 885 |
+
" border-radius: 0.25em;\n",
|
| 886 |
+
" box-sizing: border-box;\n",
|
| 887 |
+
" margin-bottom: 0.5em;\n",
|
| 888 |
+
" /* unfitted */\n",
|
| 889 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
| 890 |
+
"}\n",
|
| 891 |
+
"\n",
|
| 892 |
+
"#sk-container-id-2 div.sk-estimator.fitted {\n",
|
| 893 |
+
" /* fitted */\n",
|
| 894 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
| 895 |
+
"}\n",
|
| 896 |
+
"\n",
|
| 897 |
+
"/* on hover */\n",
|
| 898 |
+
"#sk-container-id-2 div.sk-estimator:hover {\n",
|
| 899 |
+
" /* unfitted */\n",
|
| 900 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
| 901 |
+
"}\n",
|
| 902 |
+
"\n",
|
| 903 |
+
"#sk-container-id-2 div.sk-estimator.fitted:hover {\n",
|
| 904 |
+
" /* fitted */\n",
|
| 905 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
| 906 |
+
"}\n",
|
| 907 |
+
"\n",
|
| 908 |
+
"/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
|
| 909 |
+
"\n",
|
| 910 |
+
"/* Common style for \"i\" and \"?\" */\n",
|
| 911 |
+
"\n",
|
| 912 |
+
".sk-estimator-doc-link,\n",
|
| 913 |
+
"a:link.sk-estimator-doc-link,\n",
|
| 914 |
+
"a:visited.sk-estimator-doc-link {\n",
|
| 915 |
+
" float: right;\n",
|
| 916 |
+
" font-size: smaller;\n",
|
| 917 |
+
" line-height: 1em;\n",
|
| 918 |
+
" font-family: monospace;\n",
|
| 919 |
+
" background-color: var(--sklearn-color-background);\n",
|
| 920 |
+
" border-radius: 1em;\n",
|
| 921 |
+
" height: 1em;\n",
|
| 922 |
+
" width: 1em;\n",
|
| 923 |
+
" text-decoration: none !important;\n",
|
| 924 |
+
" margin-left: 0.5em;\n",
|
| 925 |
+
" text-align: center;\n",
|
| 926 |
+
" /* unfitted */\n",
|
| 927 |
+
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
| 928 |
+
" color: var(--sklearn-color-unfitted-level-1);\n",
|
| 929 |
+
"}\n",
|
| 930 |
+
"\n",
|
| 931 |
+
".sk-estimator-doc-link.fitted,\n",
|
| 932 |
+
"a:link.sk-estimator-doc-link.fitted,\n",
|
| 933 |
+
"a:visited.sk-estimator-doc-link.fitted {\n",
|
| 934 |
+
" /* fitted */\n",
|
| 935 |
+
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
| 936 |
+
" color: var(--sklearn-color-fitted-level-1);\n",
|
| 937 |
+
"}\n",
|
| 938 |
+
"\n",
|
| 939 |
+
"/* On hover */\n",
|
| 940 |
+
"div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
|
| 941 |
+
".sk-estimator-doc-link:hover,\n",
|
| 942 |
+
"div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
|
| 943 |
+
".sk-estimator-doc-link:hover {\n",
|
| 944 |
+
" /* unfitted */\n",
|
| 945 |
+
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
| 946 |
+
" color: var(--sklearn-color-background);\n",
|
| 947 |
+
" text-decoration: none;\n",
|
| 948 |
+
"}\n",
|
| 949 |
+
"\n",
|
| 950 |
+
"div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
|
| 951 |
+
".sk-estimator-doc-link.fitted:hover,\n",
|
| 952 |
+
"div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
|
| 953 |
+
".sk-estimator-doc-link.fitted:hover {\n",
|
| 954 |
+
" /* fitted */\n",
|
| 955 |
+
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
| 956 |
+
" color: var(--sklearn-color-background);\n",
|
| 957 |
+
" text-decoration: none;\n",
|
| 958 |
+
"}\n",
|
| 959 |
+
"\n",
|
| 960 |
+
"/* Span, style for the box shown on hovering the info icon */\n",
|
| 961 |
+
".sk-estimator-doc-link span {\n",
|
| 962 |
+
" display: none;\n",
|
| 963 |
+
" z-index: 9999;\n",
|
| 964 |
+
" position: relative;\n",
|
| 965 |
+
" font-weight: normal;\n",
|
| 966 |
+
" right: .2ex;\n",
|
| 967 |
+
" padding: .5ex;\n",
|
| 968 |
+
" margin: .5ex;\n",
|
| 969 |
+
" width: min-content;\n",
|
| 970 |
+
" min-width: 20ex;\n",
|
| 971 |
+
" max-width: 50ex;\n",
|
| 972 |
+
" color: var(--sklearn-color-text);\n",
|
| 973 |
+
" box-shadow: 2pt 2pt 4pt #999;\n",
|
| 974 |
+
" /* unfitted */\n",
|
| 975 |
+
" background: var(--sklearn-color-unfitted-level-0);\n",
|
| 976 |
+
" border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
|
| 977 |
+
"}\n",
|
| 978 |
+
"\n",
|
| 979 |
+
".sk-estimator-doc-link.fitted span {\n",
|
| 980 |
+
" /* fitted */\n",
|
| 981 |
+
" background: var(--sklearn-color-fitted-level-0);\n",
|
| 982 |
+
" border: var(--sklearn-color-fitted-level-3);\n",
|
| 983 |
+
"}\n",
|
| 984 |
+
"\n",
|
| 985 |
+
".sk-estimator-doc-link:hover span {\n",
|
| 986 |
+
" display: block;\n",
|
| 987 |
+
"}\n",
|
| 988 |
+
"\n",
|
| 989 |
+
"/* \"?\"-specific style due to the `<a>` HTML tag */\n",
|
| 990 |
+
"\n",
|
| 991 |
+
"#sk-container-id-2 a.estimator_doc_link {\n",
|
| 992 |
+
" float: right;\n",
|
| 993 |
+
" font-size: 1rem;\n",
|
| 994 |
+
" line-height: 1em;\n",
|
| 995 |
+
" font-family: monospace;\n",
|
| 996 |
+
" background-color: var(--sklearn-color-background);\n",
|
| 997 |
+
" border-radius: 1rem;\n",
|
| 998 |
+
" height: 1rem;\n",
|
| 999 |
+
" width: 1rem;\n",
|
| 1000 |
+
" text-decoration: none;\n",
|
| 1001 |
+
" /* unfitted */\n",
|
| 1002 |
+
" color: var(--sklearn-color-unfitted-level-1);\n",
|
| 1003 |
+
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
| 1004 |
+
"}\n",
|
| 1005 |
+
"\n",
|
| 1006 |
+
"#sk-container-id-2 a.estimator_doc_link.fitted {\n",
|
| 1007 |
+
" /* fitted */\n",
|
| 1008 |
+
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
| 1009 |
+
" color: var(--sklearn-color-fitted-level-1);\n",
|
| 1010 |
+
"}\n",
|
| 1011 |
+
"\n",
|
| 1012 |
+
"/* On hover */\n",
|
| 1013 |
+
"#sk-container-id-2 a.estimator_doc_link:hover {\n",
|
| 1014 |
+
" /* unfitted */\n",
|
| 1015 |
+
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
| 1016 |
+
" color: var(--sklearn-color-background);\n",
|
| 1017 |
+
" text-decoration: none;\n",
|
| 1018 |
+
"}\n",
|
| 1019 |
+
"\n",
|
| 1020 |
+
"#sk-container-id-2 a.estimator_doc_link.fitted:hover {\n",
|
| 1021 |
+
" /* fitted */\n",
|
| 1022 |
+
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
| 1023 |
+
"}\n",
|
| 1024 |
+
"</style><div id=\"sk-container-id-2\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>CountVectorizer(max_features=10000, stop_words='english')</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-2\" type=\"checkbox\" checked><label for=\"sk-estimator-id-2\" class=\"sk-toggleable__label sk-toggleable__label-arrow\"><div><div>CountVectorizer</div></div><div><a class=\"sk-estimator-doc-link \" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.6/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html\">?<span>Documentation for CountVectorizer</span></a><span class=\"sk-estimator-doc-link \">i<span>Not fitted</span></span></div></label><div class=\"sk-toggleable__content \"><pre>CountVectorizer(max_features=10000, stop_words='english')</pre></div> </div></div></div></div>"
|
| 1025 |
+
],
|
| 1026 |
+
"text/plain": [
|
| 1027 |
+
"CountVectorizer(max_features=10000, stop_words='english')"
|
| 1028 |
+
]
|
| 1029 |
+
},
|
| 1030 |
+
"execution_count": 42,
|
| 1031 |
+
"metadata": {},
|
| 1032 |
+
"output_type": "execute_result"
|
| 1033 |
+
}
|
| 1034 |
+
],
|
| 1035 |
+
"source": [
|
| 1036 |
+
"cv"
|
| 1037 |
+
]
|
| 1038 |
+
},
|
| 1039 |
+
{
|
| 1040 |
+
"cell_type": "code",
|
| 1041 |
+
"execution_count": 43,
|
| 1042 |
+
"metadata": {},
|
| 1043 |
+
"outputs": [],
|
| 1044 |
+
"source": [
|
| 1045 |
+
"vector = cv.fit_transform(new_movies['tags'].values.astype('U')).toarray()"
|
| 1046 |
+
]
|
| 1047 |
+
},
|
| 1048 |
+
{
|
| 1049 |
+
"cell_type": "code",
|
| 1050 |
+
"execution_count": 44,
|
| 1051 |
+
"metadata": {},
|
| 1052 |
+
"outputs": [
|
| 1053 |
+
{
|
| 1054 |
+
"data": {
|
| 1055 |
+
"text/plain": [
|
| 1056 |
+
"(10000, 10000)"
|
| 1057 |
+
]
|
| 1058 |
+
},
|
| 1059 |
+
"execution_count": 44,
|
| 1060 |
+
"metadata": {},
|
| 1061 |
+
"output_type": "execute_result"
|
| 1062 |
+
}
|
| 1063 |
+
],
|
| 1064 |
+
"source": [
|
| 1065 |
+
"vector.shape"
|
| 1066 |
+
]
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
"cell_type": "code",
|
| 1070 |
+
"execution_count": 45,
|
| 1071 |
+
"metadata": {},
|
| 1072 |
+
"outputs": [],
|
| 1073 |
+
"source": [
|
| 1074 |
+
"from sklearn.metrics.pairwise import cosine_similarity"
|
| 1075 |
+
]
|
| 1076 |
+
},
|
| 1077 |
+
{
|
| 1078 |
+
"cell_type": "code",
|
| 1079 |
+
"execution_count": 46,
|
| 1080 |
+
"metadata": {},
|
| 1081 |
+
"outputs": [],
|
| 1082 |
+
"source": [
|
| 1083 |
+
"similarity = cosine_similarity(vector)"
|
| 1084 |
+
]
|
| 1085 |
+
},
|
| 1086 |
+
{
|
| 1087 |
+
"cell_type": "code",
|
| 1088 |
+
"execution_count": 47,
|
| 1089 |
+
"metadata": {},
|
| 1090 |
+
"outputs": [
|
| 1091 |
+
{
|
| 1092 |
+
"data": {
|
| 1093 |
+
"text/plain": [
|
| 1094 |
+
"array([[1. , 0.05634362, 0.13041013, ..., 0.07559289, 0.11065667,\n",
|
| 1095 |
+
" 0.06900656],\n",
|
| 1096 |
+
" [0.05634362, 1. , 0.07715167, ..., 0. , 0.03636965,\n",
|
| 1097 |
+
" 0. ],\n",
|
| 1098 |
+
" [0.13041013, 0.07715167, 1. , ..., 0.02300219, 0.0673435 ,\n",
|
| 1099 |
+
" 0.09449112],\n",
|
| 1100 |
+
" ...,\n",
|
| 1101 |
+
" [0.07559289, 0. , 0.02300219, ..., 1. , 0.03253 ,\n",
|
| 1102 |
+
" 0.03042903],\n",
|
| 1103 |
+
" [0.11065667, 0.03636965, 0.0673435 , ..., 0.03253 , 1. ,\n",
|
| 1104 |
+
" 0.04454354],\n",
|
| 1105 |
+
" [0.06900656, 0. , 0.09449112, ..., 0.03042903, 0.04454354,\n",
|
| 1106 |
+
" 1. ]], shape=(10000, 10000))"
|
| 1107 |
+
]
|
| 1108 |
+
},
|
| 1109 |
+
"execution_count": 47,
|
| 1110 |
+
"metadata": {},
|
| 1111 |
+
"output_type": "execute_result"
|
| 1112 |
+
}
|
| 1113 |
+
],
|
| 1114 |
+
"source": [
|
| 1115 |
+
"similarity"
|
| 1116 |
+
]
|
| 1117 |
+
},
|
| 1118 |
+
{
|
| 1119 |
+
"cell_type": "code",
|
| 1120 |
+
"execution_count": 48,
|
| 1121 |
+
"metadata": {},
|
| 1122 |
+
"outputs": [
|
| 1123 |
+
{
|
| 1124 |
+
"data": {
|
| 1125 |
+
"text/plain": [
|
| 1126 |
+
"np.int64(2)"
|
| 1127 |
+
]
|
| 1128 |
+
},
|
| 1129 |
+
"execution_count": 48,
|
| 1130 |
+
"metadata": {},
|
| 1131 |
+
"output_type": "execute_result"
|
| 1132 |
+
}
|
| 1133 |
+
],
|
| 1134 |
+
"source": [
|
| 1135 |
+
"new_movies[new_movies['title']==\"The Godfather\"].index[0]"
|
| 1136 |
+
]
|
| 1137 |
+
},
|
| 1138 |
+
{
|
| 1139 |
+
"cell_type": "code",
|
| 1140 |
+
"execution_count": 49,
|
| 1141 |
+
"metadata": {},
|
| 1142 |
+
"outputs": [
|
| 1143 |
+
{
|
| 1144 |
+
"name": "stdout",
|
| 1145 |
+
"output_type": "stream",
|
| 1146 |
+
"text": [
|
| 1147 |
+
"The Godfather\n",
|
| 1148 |
+
"The Godfather: Part II\n",
|
| 1149 |
+
"Blood Ties\n",
|
| 1150 |
+
"Joker\n",
|
| 1151 |
+
"Bomb City\n"
|
| 1152 |
+
]
|
| 1153 |
+
}
|
| 1154 |
+
],
|
| 1155 |
+
"source": [
|
| 1156 |
+
"distance = sorted(list(enumerate(similarity[2])) , reverse=True, key=lambda vector:vector[1])\n",
|
| 1157 |
+
"for i in distance[0:5]:\n",
|
| 1158 |
+
" print(new_movies.iloc[i[0]].title)"
|
| 1159 |
+
]
|
| 1160 |
+
},
|
| 1161 |
+
{
|
| 1162 |
+
"cell_type": "code",
|
| 1163 |
+
"execution_count": 50,
|
| 1164 |
+
"metadata": {},
|
| 1165 |
+
"outputs": [],
|
| 1166 |
+
"source": [
|
| 1167 |
+
"def recommend(movies):\n",
|
| 1168 |
+
" index=new_movies[new_movies['title']==movies].index[0]\n",
|
| 1169 |
+
" distance = sorted(list(enumerate(similarity[index])), reverse=True, key=lambda vector:vector[1])\n",
|
| 1170 |
+
" for i in distance[0:5]:\n",
|
| 1171 |
+
" print(new_movies.iloc[i[0]].title)"
|
| 1172 |
+
]
|
| 1173 |
+
},
|
| 1174 |
+
{
|
| 1175 |
+
"cell_type": "code",
|
| 1176 |
+
"execution_count": 51,
|
| 1177 |
+
"metadata": {},
|
| 1178 |
+
"outputs": [
|
| 1179 |
+
{
|
| 1180 |
+
"name": "stdout",
|
| 1181 |
+
"output_type": "stream",
|
| 1182 |
+
"text": [
|
| 1183 |
+
"Iron Man\n",
|
| 1184 |
+
"Iron Man 3\n",
|
| 1185 |
+
"Guardians of the Galaxy Vol. 2\n",
|
| 1186 |
+
"Avengers: Age of Ultron\n",
|
| 1187 |
+
"Star Wars: Episode III - Revenge of the Sith\n"
|
| 1188 |
+
]
|
| 1189 |
+
}
|
| 1190 |
+
],
|
| 1191 |
+
"source": [
|
| 1192 |
+
"recommend(\"Iron Man\")"
|
| 1193 |
+
]
|
| 1194 |
+
},
|
| 1195 |
+
{
|
| 1196 |
+
"cell_type": "code",
|
| 1197 |
+
"execution_count": 52,
|
| 1198 |
+
"metadata": {},
|
| 1199 |
+
"outputs": [],
|
| 1200 |
+
"source": [
|
| 1201 |
+
"import pickle"
|
| 1202 |
+
]
|
| 1203 |
+
},
|
| 1204 |
+
{
|
| 1205 |
+
"cell_type": "code",
|
| 1206 |
+
"execution_count": 53,
|
| 1207 |
+
"metadata": {},
|
| 1208 |
+
"outputs": [],
|
| 1209 |
+
"source": [
|
| 1210 |
+
"pickle.dump(new_movies , open('movies_list.pkl' , 'wb'))"
|
| 1211 |
+
]
|
| 1212 |
+
},
|
| 1213 |
+
{
|
| 1214 |
+
"cell_type": "code",
|
| 1215 |
+
"execution_count": 54,
|
| 1216 |
+
"metadata": {},
|
| 1217 |
+
"outputs": [],
|
| 1218 |
+
"source": [
|
| 1219 |
+
"pickle.dump(similarity,open('similarity.pkl','wb'))"
|
| 1220 |
+
]
|
| 1221 |
+
},
|
| 1222 |
+
{
|
| 1223 |
+
"cell_type": "code",
|
| 1224 |
+
"execution_count": 55,
|
| 1225 |
+
"metadata": {},
|
| 1226 |
+
"outputs": [
|
| 1227 |
+
{
|
| 1228 |
+
"data": {
|
| 1229 |
+
"text/html": [
|
| 1230 |
+
"<div>\n",
|
| 1231 |
+
"<style scoped>\n",
|
| 1232 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 1233 |
+
" vertical-align: middle;\n",
|
| 1234 |
+
" }\n",
|
| 1235 |
+
"\n",
|
| 1236 |
+
" .dataframe tbody tr th {\n",
|
| 1237 |
+
" vertical-align: top;\n",
|
| 1238 |
+
" }\n",
|
| 1239 |
+
"\n",
|
| 1240 |
+
" .dataframe thead th {\n",
|
| 1241 |
+
" text-align: right;\n",
|
| 1242 |
+
" }\n",
|
| 1243 |
+
"</style>\n",
|
| 1244 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 1245 |
+
" <thead>\n",
|
| 1246 |
+
" <tr style=\"text-align: right;\">\n",
|
| 1247 |
+
" <th></th>\n",
|
| 1248 |
+
" <th>id</th>\n",
|
| 1249 |
+
" <th>title</th>\n",
|
| 1250 |
+
" <th>tags</th>\n",
|
| 1251 |
+
" </tr>\n",
|
| 1252 |
+
" </thead>\n",
|
| 1253 |
+
" <tbody>\n",
|
| 1254 |
+
" <tr>\n",
|
| 1255 |
+
" <th>0</th>\n",
|
| 1256 |
+
" <td>278</td>\n",
|
| 1257 |
+
" <td>The Shawshank Redemption</td>\n",
|
| 1258 |
+
" <td>Framed in the 1940s for the double murder of h...</td>\n",
|
| 1259 |
+
" </tr>\n",
|
| 1260 |
+
" <tr>\n",
|
| 1261 |
+
" <th>1</th>\n",
|
| 1262 |
+
" <td>19404</td>\n",
|
| 1263 |
+
" <td>Dilwale Dulhania Le Jayenge</td>\n",
|
| 1264 |
+
" <td>Raj is a rich, carefree, happy-go-lucky second...</td>\n",
|
| 1265 |
+
" </tr>\n",
|
| 1266 |
+
" <tr>\n",
|
| 1267 |
+
" <th>2</th>\n",
|
| 1268 |
+
" <td>238</td>\n",
|
| 1269 |
+
" <td>The Godfather</td>\n",
|
| 1270 |
+
" <td>Spanning the years 1945 to 1955, a chronicle o...</td>\n",
|
| 1271 |
+
" </tr>\n",
|
| 1272 |
+
" <tr>\n",
|
| 1273 |
+
" <th>3</th>\n",
|
| 1274 |
+
" <td>424</td>\n",
|
| 1275 |
+
" <td>Schindler's List</td>\n",
|
| 1276 |
+
" <td>The true story of how businessman Oskar Schind...</td>\n",
|
| 1277 |
+
" </tr>\n",
|
| 1278 |
+
" <tr>\n",
|
| 1279 |
+
" <th>4</th>\n",
|
| 1280 |
+
" <td>240</td>\n",
|
| 1281 |
+
" <td>The Godfather: Part II</td>\n",
|
| 1282 |
+
" <td>In the continuing saga of the Corleone crime f...</td>\n",
|
| 1283 |
+
" </tr>\n",
|
| 1284 |
+
" <tr>\n",
|
| 1285 |
+
" <th>...</th>\n",
|
| 1286 |
+
" <td>...</td>\n",
|
| 1287 |
+
" <td>...</td>\n",
|
| 1288 |
+
" <td>...</td>\n",
|
| 1289 |
+
" </tr>\n",
|
| 1290 |
+
" <tr>\n",
|
| 1291 |
+
" <th>9995</th>\n",
|
| 1292 |
+
" <td>10196</td>\n",
|
| 1293 |
+
" <td>The Last Airbender</td>\n",
|
| 1294 |
+
" <td>The story follows the adventures of Aang, a yo...</td>\n",
|
| 1295 |
+
" </tr>\n",
|
| 1296 |
+
" <tr>\n",
|
| 1297 |
+
" <th>9996</th>\n",
|
| 1298 |
+
" <td>331446</td>\n",
|
| 1299 |
+
" <td>Sharknado 3: Oh Hell No!</td>\n",
|
| 1300 |
+
" <td>The sharks take bite out of the East Coast whe...</td>\n",
|
| 1301 |
+
" </tr>\n",
|
| 1302 |
+
" <tr>\n",
|
| 1303 |
+
" <th>9997</th>\n",
|
| 1304 |
+
" <td>13995</td>\n",
|
| 1305 |
+
" <td>Captain America</td>\n",
|
| 1306 |
+
" <td>During World War II, a brave, patriotic Americ...</td>\n",
|
| 1307 |
+
" </tr>\n",
|
| 1308 |
+
" <tr>\n",
|
| 1309 |
+
" <th>9998</th>\n",
|
| 1310 |
+
" <td>2312</td>\n",
|
| 1311 |
+
" <td>In the Name of the King: A Dungeon Siege Tale</td>\n",
|
| 1312 |
+
" <td>A man named Farmer sets out to rescue his kidn...</td>\n",
|
| 1313 |
+
" </tr>\n",
|
| 1314 |
+
" <tr>\n",
|
| 1315 |
+
" <th>9999</th>\n",
|
| 1316 |
+
" <td>455957</td>\n",
|
| 1317 |
+
" <td>Domino</td>\n",
|
| 1318 |
+
" <td>Seeking justice for his partner’s murder by an...</td>\n",
|
| 1319 |
+
" </tr>\n",
|
| 1320 |
+
" </tbody>\n",
|
| 1321 |
+
"</table>\n",
|
| 1322 |
+
"<p>10000 rows × 3 columns</p>\n",
|
| 1323 |
+
"</div>"
|
| 1324 |
+
],
|
| 1325 |
+
"text/plain": [
|
| 1326 |
+
" id title \\\n",
|
| 1327 |
+
"0 278 The Shawshank Redemption \n",
|
| 1328 |
+
"1 19404 Dilwale Dulhania Le Jayenge \n",
|
| 1329 |
+
"2 238 The Godfather \n",
|
| 1330 |
+
"3 424 Schindler's List \n",
|
| 1331 |
+
"4 240 The Godfather: Part II \n",
|
| 1332 |
+
"... ... ... \n",
|
| 1333 |
+
"9995 10196 The Last Airbender \n",
|
| 1334 |
+
"9996 331446 Sharknado 3: Oh Hell No! \n",
|
| 1335 |
+
"9997 13995 Captain America \n",
|
| 1336 |
+
"9998 2312 In the Name of the King: A Dungeon Siege Tale \n",
|
| 1337 |
+
"9999 455957 Domino \n",
|
| 1338 |
+
"\n",
|
| 1339 |
+
" tags \n",
|
| 1340 |
+
"0 Framed in the 1940s for the double murder of h... \n",
|
| 1341 |
+
"1 Raj is a rich, carefree, happy-go-lucky second... \n",
|
| 1342 |
+
"2 Spanning the years 1945 to 1955, a chronicle o... \n",
|
| 1343 |
+
"3 The true story of how businessman Oskar Schind... \n",
|
| 1344 |
+
"4 In the continuing saga of the Corleone crime f... \n",
|
| 1345 |
+
"... ... \n",
|
| 1346 |
+
"9995 The story follows the adventures of Aang, a yo... \n",
|
| 1347 |
+
"9996 The sharks take bite out of the East Coast whe... \n",
|
| 1348 |
+
"9997 During World War II, a brave, patriotic Americ... \n",
|
| 1349 |
+
"9998 A man named Farmer sets out to rescue his kidn... \n",
|
| 1350 |
+
"9999 Seeking justice for his partner’s murder by an... \n",
|
| 1351 |
+
"\n",
|
| 1352 |
+
"[10000 rows x 3 columns]"
|
| 1353 |
+
]
|
| 1354 |
+
},
|
| 1355 |
+
"execution_count": 55,
|
| 1356 |
+
"metadata": {},
|
| 1357 |
+
"output_type": "execute_result"
|
| 1358 |
+
}
|
| 1359 |
+
],
|
| 1360 |
+
"source": [
|
| 1361 |
+
"pickle.load(open('movies_list.pkl','rb'))"
|
| 1362 |
+
]
|
| 1363 |
+
},
|
| 1364 |
+
{
|
| 1365 |
+
"cell_type": "code",
|
| 1366 |
+
"execution_count": null,
|
| 1367 |
+
"metadata": {},
|
| 1368 |
+
"outputs": [],
|
| 1369 |
+
"source": []
|
| 1370 |
+
}
|
| 1371 |
+
],
|
| 1372 |
+
"metadata": {
|
| 1373 |
+
"kernelspec": {
|
| 1374 |
+
"display_name": "aienv",
|
| 1375 |
+
"language": "python",
|
| 1376 |
+
"name": "python3"
|
| 1377 |
+
},
|
| 1378 |
+
"language_info": {
|
| 1379 |
+
"codemirror_mode": {
|
| 1380 |
+
"name": "ipython",
|
| 1381 |
+
"version": 3
|
| 1382 |
+
},
|
| 1383 |
+
"file_extension": ".py",
|
| 1384 |
+
"mimetype": "text/x-python",
|
| 1385 |
+
"name": "python",
|
| 1386 |
+
"nbconvert_exporter": "python",
|
| 1387 |
+
"pygments_lexer": "ipython3",
|
| 1388 |
+
"version": "3.10.16"
|
| 1389 |
+
}
|
| 1390 |
+
},
|
| 1391 |
+
"nbformat": 4,
|
| 1392 |
+
"nbformat_minor": 2
|
| 1393 |
+
}
|
Movie-recommendation-system/requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas
|
| 2 |
+
numpy
|
| 3 |
+
seaborn
|
| 4 |
+
matplotlib
|
| 5 |
+
scikit-learn
|
Movie-recommendation-system/ssh.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
from requests.packages.urllib3.exceptions import InsecureRequestWarning
|
| 3 |
+
requests.packages.urllib3.disable_warnings(InsecureRequestWarning)
|
| 4 |
+
|
| 5 |
+
def fetch_url():
|
| 6 |
+
url = "https://huggingface.co/spaces/Shiva7706/ML_Movie_recommendation_system"
|
| 7 |
+
try:
|
| 8 |
+
response = requests.get(url, verify=False)
|
| 9 |
+
print(f"Status Code: {response.status_code}")
|
| 10 |
+
print("Connection successful!")
|
| 11 |
+
except Exception as e:
|
| 12 |
+
print(f"Error: {e}")
|
| 13 |
+
|
| 14 |
+
if __name__ == "__main__":
|
| 15 |
+
fetch_url()
|
Movie-recommendation-system/top10K-TMDB-movies.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|