|
|
|
|
|
import streamlit as st |
|
import pickle |
|
import requests |
|
|
|
movies = pickle.load(open("movies_list.pkl", 'rb')) |
|
similarity = pickle.load(open("similarity.pkl",'rb')) |
|
movies_list = movies['title'].values |
|
st.header("Movie Recommender System") |
|
selectvalue = st.selectbox("Select movie from dropdown", movies_list) |
|
|
|
def fetch_poster(movie_id): |
|
try: |
|
url = "https://api.themoviedb.org/3/movie/{}?api_key=8cfe8dff1a6fff88fe27b573ee65c035&language=en-US".format(movie_id) |
|
|
|
data = requests.get(url, verify=False) |
|
data = data.json() |
|
poster_path = data['poster_path'] |
|
if poster_path: |
|
full_path = "https://image.tmdb.org/t/p/w500/" + poster_path |
|
return full_path |
|
else: |
|
st.warning(f"No poster found for movie ID {movie_id}") |
|
return None |
|
except Exception as e: |
|
st.error(f"Error fetching poster: {str(e)}") |
|
return None |
|
|
|
def recommend(movie): |
|
index = movies[movies['title']==movie].index[0] |
|
distance = sorted(list(enumerate(similarity[index])), reverse=True, key=lambda vector:vector[1]) |
|
recommend_movie = [] |
|
recommend_poster = [] |
|
for i in distance[1:6]: |
|
movies_id = movies.iloc[i[0]].id |
|
recommend_movie.append(movies.iloc[i[0]].title) |
|
poster = fetch_poster(movies_id) |
|
recommend_poster.append(poster) |
|
return recommend_movie, recommend_poster |
|
|
|
if st.button("Show Recommend"): |
|
movie_name, movie_poster = recommend(selectvalue) |
|
cols = st.columns(5) |
|
for idx, (col, name, poster) in enumerate(zip(cols, movie_name, movie_poster)): |
|
with col: |
|
st.text(name) |
|
if poster: |
|
st.image(poster) |
|
else: |
|
st.write("No poster available") |