#! /usr/bin/env python """ SmollmV2 model implementation Author: Shilpaj Bhalerao Date: 2025-01-19 """ # Third-Party Imports import torch import torch.nn as nn import torch.nn.functional as F import math # Local Imports from config import SmollmConfig, RoPEConfig class RoPEAttention: """ Rotary Position Embedding attention with support for different Q/K dimensions """ def __init__(self, head_dim, kv_dim, base=RoPEConfig.base): """ Initialize rotary embeddings Args: head_dim: Dimension of query head kv_dim: Dimension of key/value head base: Base for the angle calculations (default: 10000) """ super().__init__() # Generate theta parameter for rotary embeddings for both Q and K dimensions inv_freq_k = 1.0 / (base ** (torch.arange(0, kv_dim, 2).float() / kv_dim)) self.register_buffer('inv_freq_k', inv_freq_k) self.head_dim = head_dim self.kv_dim = kv_dim self.seq_len_cached = None self.cos_cached = None self.sin_cached = None def _update_cos_sin_cache(self, x, seq_len): """Update cached cos and sin values for given sequence length""" if seq_len != self.seq_len_cached: self.seq_len_cached = seq_len t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq_k) freqs = torch.einsum('i,j->ij', t, self.inv_freq_k) emb = torch.cat((freqs, freqs), dim=-1).to(x.device) self.cos_cached = emb.cos()[None, None, :, :] self.sin_cached = emb.sin()[None, None, :, :] def _rotate_half(self, x): """Rotate half the hidden dims of the input.""" x1 = x[..., :x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2:] return torch.cat((-x2, x1), dim=-1) def __call__(self, q, k): """ Apply rotary embeddings to input queries and keys Args: q: Query tensor of shape (batch, n_head, seq_len, head_dim) k: Key tensor of shape (batch, n_head, seq_len, kv_dim) Returns: q_rot: Rotated query tensor k_rot: Rotated key tensor """ seq_len = q.shape[2] self._update_cos_sin_cache(k, seq_len) # Apply rotary embeddings to keys k_cos = self.cos_cached[..., :self.kv_dim] k_sin = self.sin_cached[..., :self.kv_dim] k_rot = (k * k_cos) + (self._rotate_half(k) * k_sin) # For queries, we only apply rotation to the part that interacts with keys q_part = q[..., :self.kv_dim] q_cos = self.cos_cached[..., :self.kv_dim] q_sin = self.sin_cached[..., :self.kv_dim] q_rot_part = (q_part * q_cos) + (self._rotate_half(q_part) * q_sin) # Combine rotated part with unrotated parts for query q_rot = torch.cat([q_rot_part, q[..., self.kv_dim:]], dim=-1) return q_rot, k_rot def register_buffer(self, name, tensor): """Helper function to register a buffer""" setattr(self, name, tensor) class CausalSelfAttention(nn.Module): """ Causal self-attention mechanism with reduced KV dimensions and RoPE """ def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 # Calculate dimensions self.head_dim = config.n_embd // config.n_head # 576/9 = 64 self.n_head = config.n_head self.n_embd = config.n_embd # Make kv_dim divisible by n_head (189 is closest to 192 that's divisible by 9) self.kv_dim = 189 # 189 = 9 * 21, closest to 192 that's divisible by 9 self.kv_dim_per_head = self.kv_dim // self.n_head # 21 # Separate projections with reduced dimensions for k,v self.q_proj = nn.Linear(config.n_embd, config.n_embd, bias=False) self.k_proj = nn.Linear(config.n_embd, self.kv_dim, bias=False) # 189 dimensions self.v_proj = nn.Linear(config.n_embd, self.kv_dim, bias=False) # 189 dimensions # output projection self.o_proj = nn.Linear(config.n_embd, config.n_embd, bias=False) # rotary embeddings self.rope = RoPEAttention(self.head_dim, self.kv_dim_per_head) def forward(self, x): B, T, C = x.size() # calculate query, key, values q = self.q_proj(x) k = self.k_proj(x) v = self.v_proj(x) # reshape with exact dimensions q = q.view(B, T, self.n_head, self.head_dim).transpose(1, 2) k = k.view(B, T, self.n_head, self.kv_dim_per_head).transpose(1, 2) v = v.view(B, T, self.n_head, self.kv_dim_per_head).transpose(1, 2) # apply rotary embeddings q, k = self.rope(q, k) # pad k and v to match q dimension for attention k_pad = torch.zeros_like(q) v_pad = torch.zeros_like(q) k_pad[..., :self.kv_dim_per_head] = k v_pad[..., :self.kv_dim_per_head] = v # flash attention y = F.scaled_dot_product_attention(q, k_pad, v_pad, is_causal=True) # reshape back y = y.transpose(1, 2).contiguous().view(B, T, C) # output projection y = self.o_proj(y) return y class MLP(nn.Module): """ MLP (Multi-Layer Perceptron) layer with gate/up/down projection structure """ def __init__(self, config): super().__init__() hidden_dim = int(config.n_embd * config.mlp_ratio) - 1 self.gate_proj = nn.Linear(config.n_embd, hidden_dim, bias=False) self.up_proj = nn.Linear(config.n_embd, hidden_dim, bias=False) self.down_proj = nn.Linear(hidden_dim, config.n_embd, bias=False) self.down_proj.NANOGPT_SCALE_INIT = 1 def forward(self, x): # SwiGLU activation as used in PaLM, Llama, etc. gate = self.gate_proj(x) up = self.up_proj(x) x = F.silu(gate) * up x = self.down_proj(x) return x class Block(nn.Module): """ Transformer block """ def __init__(self, config): super().__init__() self.ln_1 = nn.LayerNorm(config.n_embd, bias=False) self.attn = CausalSelfAttention(config) self.ln_2 = nn.LayerNorm(config.n_embd, bias=False) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class SmollmV2(nn.Module): """ SmollmV2 model """ def __init__(self, config=SmollmConfig()): super().__init__() self.config = config self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(config.vocab_size, config.n_embd), h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f = nn.LayerNorm(config.n_embd, bias=False), )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # weight sharing self.transformer.wte.weight = self.lm_head.weight # weight initialization self.apply(self._init_weights) # Compile the model if torch version supports it if hasattr(torch, 'compile'): self.forward = torch.compile(self.forward) def _init_weights(self, module): if isinstance(module, nn.Linear): std = 0.02 if hasattr(module, 'NANGPT_SCALE_INIT'): std *= (2 * self.config.n_layer) ** -0.5 torch.nn.init.normal_(module.weight, mean = 0.0, std = std) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std = 0.04) def forward(self, idx, targets=None): # idx is of shape (B, T) B, T = idx.size() assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" # forward the token and posisition embeddings tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd) x = tok_emb # forward the blocks of the transformer for block in self.transformer.h: x = block(x) # forward the final layernorm and the classifier x = self.transformer.ln_f(x) logits = self.lm_head(x) # (B, T, vocab_size) loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) return logits, loss