Docs: Updated README
Browse files
README.md
CHANGED
@@ -11,4 +11,70 @@ license: mit
|
|
11 |
short_description: Text generation using smollmv2-135M model
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
short_description: Text generation using smollmv2-135M model
|
12 |
---
|
13 |
|
14 |
+
# SmoLLMv2: A Small but Efficient Language Model
|
15 |
+
|
16 |
+
[Training Repo Link](https://github.com/Shilpaj1994/SmoLLMv2)
|
17 |
+
[Gradio App Link](https://huggingface.co/spaces/Shilpaj/SmoLLMv2)
|
18 |
+
|
19 |
+
|
20 |
+
SmoLLMv2 is a 135M parameter language model designed for efficient text generation. It incorporates several modern architectural improvements while maintaining a small footprint.
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
## Features
|
25 |
+
|
26 |
+
- **Efficient Architecture**:
|
27 |
+
- 30 transformer layers
|
28 |
+
- 9 attention heads
|
29 |
+
- 576 embedding dimension
|
30 |
+
- Memory-efficient attention with reduced KV dimensions
|
31 |
+
- Rotary Position Embeddings (RoPE)
|
32 |
+
- SwiGLU activation function
|
33 |
+
|
34 |
+
- **Training Optimizations**:
|
35 |
+
- Mixed precision training (16-bit)
|
36 |
+
- Gradient accumulation
|
37 |
+
- OneCycleLR scheduler
|
38 |
+
- Streaming dataset support
|
39 |
+
- Automatic model compilation (with PyTorch 2.0+)
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
## Model Architecture
|
44 |
+
|
45 |
+
SmoLLMv2 incorporates several efficiency improvements:
|
46 |
+
|
47 |
+
1. **Reduced KV Dimensions**: Uses 189-dimensional key/value projections (instead of full 576) to save memory and computation.
|
48 |
+
2. **RoPE Attention**: Implements Rotary Position Embeddings for better handling of sequential information.
|
49 |
+
3. **SwiGLU Activation**: Uses the SwiGLU activation function in the MLP layers for better performance.
|
50 |
+
4. **Weight Sharing**: Shares weights between input embeddings and output projection.
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
## Configuration
|
55 |
+
|
56 |
+
The model's behavior can be customized through various configuration classes in `config.py`:
|
57 |
+
|
58 |
+
- `SmollmConfig`: Core model architecture and training parameters
|
59 |
+
- `RoPEConfig`: Rotary Position Embedding settings
|
60 |
+
- `OptimizerConfig`: Optimization and learning rate settings
|
61 |
+
- `DataConfig`: Dataset and tokenizer configuration
|
62 |
+
- `TrainerConfig`: Training infrastructure settings
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
## Dataset
|
67 |
+
|
68 |
+
The model is trained on the Cosmopedia dataset, which is streamed during training to handle large-scale data efficiently.
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
## Requirements
|
73 |
+
|
74 |
+
See `requirements.txt` for full dependencies. Key requirements:
|
75 |
+
|
76 |
+
- PyTorch ≥ 2.0.0
|
77 |
+
- Transformers ≥ 4.30.0
|
78 |
+
- Lightning ≥ 2.0.0
|
79 |
+
- Gradio ≥ 5.13.1
|
80 |
+
|
app.py
CHANGED
@@ -95,6 +95,11 @@ model, tokenizer, device = load_model()
|
|
95 |
def generate_text(prompt, num_tokens, temperature=0.8, top_p=0.9):
|
96 |
"""
|
97 |
Generate text using the SmollmV2 model.
|
|
|
|
|
|
|
|
|
|
|
98 |
"""
|
99 |
try:
|
100 |
# Ensure num_tokens doesn't exceed model's block size
|
@@ -148,13 +153,13 @@ demo = gr.Interface(
|
|
148 |
fn=generate_text,
|
149 |
inputs=[
|
150 |
gr.Textbox(label="Enter your prompt", value="Once upon a time"),
|
151 |
-
gr.Slider(minimum=1, maximum=SmollmConfig.block_size, value=100, step=1, label="Number of tokens to generate"),
|
152 |
gr.Slider(minimum=0.1, maximum=2.0, value=0.8, step=0.1, label="Temperature (higher = more random)"),
|
153 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p (nucleus sampling)")
|
154 |
],
|
155 |
outputs=gr.Textbox(label="Generated Text"),
|
156 |
-
title="
|
157 |
-
description="Generate text using the
|
158 |
allow_flagging="never",
|
159 |
cache_examples=True
|
160 |
)
|
|
|
95 |
def generate_text(prompt, num_tokens, temperature=0.8, top_p=0.9):
|
96 |
"""
|
97 |
Generate text using the SmollmV2 model.
|
98 |
+
:param prompt: The initial text prompt to start the generation from.
|
99 |
+
:param num_tokens: The number of tokens to generate.
|
100 |
+
:param temperature: The temperature parameter for controlling randomness.
|
101 |
+
:param top_p: The top-p parameter for nucleus sampling
|
102 |
+
:return: The generated text.
|
103 |
"""
|
104 |
try:
|
105 |
# Ensure num_tokens doesn't exceed model's block size
|
|
|
153 |
fn=generate_text,
|
154 |
inputs=[
|
155 |
gr.Textbox(label="Enter your prompt", value="Once upon a time"),
|
156 |
+
gr.Slider(minimum=1, maximum=SmollmConfig.block_size//2, value=100, step=1, label="Number of tokens to generate"),
|
157 |
gr.Slider(minimum=0.1, maximum=2.0, value=0.8, step=0.1, label="Temperature (higher = more random)"),
|
158 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p (nucleus sampling)")
|
159 |
],
|
160 |
outputs=gr.Textbox(label="Generated Text"),
|
161 |
+
title="SmoLLMv2 Text Generator",
|
162 |
+
description="Generate text using the SmoLLMv2-135M model",
|
163 |
allow_flagging="never",
|
164 |
cache_examples=True
|
165 |
)
|