File size: 19,280 Bytes
f42f624 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
#!/usr/bin/env python
"""
Lightning module for SmollmV2 model training
"""
# Standard Library Imports
import os
from typing import Tuple
# Third-Party Imports
import torch
import torch.nn as nn
import torch.optim as optim
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from pytorch_lightning.loggers import TensorBoardLogger
import matplotlib.pyplot as plt
from tensorboard.backend.event_processing import event_accumulator
import time
import numpy as np
from contextlib import nullcontext
import torch.nn.functional as F
# Local Imports
from config import (SmollmConfig, OptimizerConfig, CheckpointConfig,
LoggingConfig, TrainerConfig)
from smollmv2 import SmollmV2
from cosmopedia_datamodule import CosmopediaDataModule
class LitSmollmv2(pl.LightningModule):
"""
Lightning module for SmollmV2 model training
"""
def __init__(
self,
learning_rate=OptimizerConfig.learning_rate,
weight_decay=OptimizerConfig.weight_decay,
total_epochs=None,
total_steps=None,
interupt_steps=SmollmConfig.max_steps,
compile_model=True
):
"""
Constructor
:param learning_rate: Learning rate for the optimizer
:param weight_decay: Weight decay for the optimizer
:param total_epochs: Total number of epochs (optional)
:param total_steps: Total number of steps (optional)
:param compile_model: Whether to compile the model for faster training
Note: Provide either total_epochs or total_steps, not both
"""
super().__init__()
self.save_hyperparameters()
if total_epochs is None and total_steps is None:
raise ValueError("Must provide either total_epochs or total_steps")
if total_epochs is not None and total_steps is not None:
raise ValueError("Provide either total_epochs or total_steps, not both")
# Set seeds from config
torch.manual_seed(SmollmConfig.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(SmollmConfig.seed)
# Initialize the model
self.model = SmollmV2(SmollmConfig())
# Compile the model if requested and supported
if compile_model and hasattr(torch, 'compile'):
print("Compiling model for faster training...")
self.model = torch.compile(self.model)
# Print total model parameters
total_params = sum(p.numel() for p in self.model.parameters())
print(f"Total model parameters: {total_params:,}\n")
# OneCycleLR parameters from OptimizerConfig
self.max_lr = OptimizerConfig.max_lr
self.div_factor = OptimizerConfig.div_factor
self.final_div_factor = OptimizerConfig.final_div_factor
self.pct_start = OptimizerConfig.pct_start
self.total_epochs = total_epochs
self.total_steps = total_steps
# Add performance monitoring attributes
self.iter_num = 0
self.iter_time = 0.0
self.tokens_processed = 0
self.interupt_steps = interupt_steps
def on_load_checkpoint(self, checkpoint):
"""Restore iter_num when loading from checkpoint"""
if 'iter_num' in checkpoint:
self.iter_num = checkpoint['iter_num']
def on_save_checkpoint(self, checkpoint):
"""Save iter_num in checkpoint"""
checkpoint['iter_num'] = self.iter_num
def forward(self, x, targets=None):
"""
Method to forward the input through the model
"""
return self.model(x, targets)
def training_step(self, batch, batch_idx):
"""
Method to perform a training step with performance monitoring
"""
try:
# Stop training at max steps from config
if self.iter_num >= self.interupt_steps:
self.trainer.should_stop = True
return None
# Start timing
t0 = time.time()
# Process batch
input_ids = batch['input_ids']
labels = batch['labels']
attention_mask = batch['attention_mask']
# Clear cache before forward pass
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Forward pass
logits, loss = self(input_ids, targets=labels)
# Calculate tokens processed
tokens_per_iter = np.prod(input_ids.shape)
self.tokens_processed += tokens_per_iter
# Ensure CUDA synchronization after forward pass
if torch.cuda.is_available():
torch.cuda.synchronize()
# Calculate iteration time
dt = time.time() - t0
self.iter_time += dt
# Log metrics
self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True)
self.log('lr', self.trainer.optimizers[0].param_groups[0]['lr'], on_step=True)
# Generate sample prediction
if self.iter_num % LoggingConfig.generate_every == 0:
# Get a sample input from the batch
context_length = SmollmConfig.context_length # Number of tokens to use as context
sample_input = input_ids[0:1, :context_length]
# Generate prediction
self.model.eval()
with torch.no_grad():
max_new_tokens = SmollmConfig.max_new_tokens
temperature = SmollmConfig.temperature
top_k = SmollmConfig.top_k
for _ in range(max_new_tokens):
# Get model predictions
logits, _ = self(sample_input)
logits = logits[:, -1, :] / temperature
# Apply top-k sampling
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
probs = F.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
sample_input = torch.cat([sample_input, next_token], dim=1)
# Convert tokens to text using the tokenizer from datamodule
try:
input_text = self.trainer.datamodule.tokenizer.decode(sample_input[0, :10].tolist())
generated_text = self.trainer.datamodule.tokenizer.decode(sample_input[0, 10:].tolist())
print(f"\nStep {self.iter_num} - Sample Generation:")
print(f"Input: {input_text}")
print(f"Generated: {generated_text}\n")
except Exception as e:
print(f"Error decoding text: {str(e)}")
self.model.train() # Set back to training mode
# Log performance metrics
if self.iter_num % LoggingConfig.log_every == 0:
tokens_per_sec = self.tokens_processed / self.iter_time if self.iter_time > 0 else 0
self.log('tokens_per_sec', tokens_per_sec, on_step=True)
self.log('iter_time_ms', dt * 1000, on_step=True)
print(f"\nstep {self.iter_num} | loss: {loss.item():.4f} | dt: {dt*1000:.2f}ms | tok/sec: {tokens_per_sec:.2f}")
if torch.cuda.is_available():
self.log('gpu_memory', torch.cuda.memory_allocated() / 1e9, on_step=True)
self.log('gpu_memory_reserved', torch.cuda.memory_reserved() / 1e9, on_step=True)
print(f"GPU Memory: {torch.cuda.memory_allocated() / 1e9:.2f}GB / {torch.cuda.memory_reserved() / 1e9:.2f}GB")
# Clear GPU cache periodically if enabled
if SmollmConfig.clear_cache_every > 0 and self.iter_num % SmollmConfig.clear_cache_every == 0:
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.tokens_processed = 0
self.iter_time = 0.0
self.iter_num += 1
return loss
except RuntimeError as e:
if "out of memory" in str(e):
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"WARNING: out of memory - {str(e)}")
return None
raise e
def validation_step(self, batch, batch_idx):
"""
Method to perform a validation step
"""
# Start timing for validation
t0 = time.time()
# Ensure CUDA synchronization for accurate timing
if torch.cuda.is_available():
torch.cuda.synchronize()
# Process batch - updated for Cosmopedia format
input_ids = batch['input_ids']
labels = batch['labels']
attention_mask = batch['attention_mask']
# Forward pass
logits, loss = self(input_ids, targets=labels)
# Ensure CUDA synchronization after forward pass
if torch.cuda.is_available():
torch.cuda.synchronize()
# Calculate validation time
dt = time.time() - t0
# Log metrics
self.log('val_loss', loss, on_step=False, on_epoch=True, prog_bar=True, sync_dist=True)
if batch_idx == 0: # Only print for first batch
print(f"\nValidation - loss: {loss.item():.4f} | dt: {dt*1000:.2f}ms")
if torch.cuda.is_available():
print(f"GPU Memory: {torch.cuda.memory_allocated() / 1e9:.2f}GB / {torch.cuda.memory_reserved() / 1e9:.2f}GB")
return loss
def configure_optimizers(self):
"""
Method to configure the optimizer and scheduler
"""
# Create an instance of OptimizerConfig
optim_config = OptimizerConfig()
optimizer = getattr(optim, optim_config.optimizer)(
self.parameters(),
lr=self.hparams.learning_rate,
weight_decay=self.hparams.weight_decay,
**optim_config.optimizer_kwargs
)
# Calculate total steps
if self.total_steps is None:
total_steps = len(self.trainer.datamodule.train_dataloader()) * self.total_epochs
else:
total_steps = self.total_steps
scheduler = {
'scheduler': optim.lr_scheduler.OneCycleLR(
optimizer,
max_lr=self.max_lr,
total_steps=total_steps,
pct_start=self.pct_start,
div_factor=self.div_factor,
final_div_factor=self.final_div_factor,
three_phase=optim_config.three_phase,
anneal_strategy=optim_config.anneal_strategy
),
'interval': 'step'
}
return [optimizer], [scheduler]
def on_train_epoch_end(self):
"""
Called at the end of training epoch
"""
# Reset performance counters at epoch end
self.tokens_processed = 0
self.iter_time = 0.0
def plot_learning_rate(log_dir):
"""
Plot learning rate from TensorBoard logs
"""
event_files = []
for root, dirs, files in os.walk(log_dir):
for file in files:
if "events.out.tfevents" in file:
event_files.append(os.path.join(root, file))
lr_data = []
steps = []
for event_file in event_files:
ea = event_accumulator.EventAccumulator(
event_file,
size_guidance={'scalars': 0}
)
ea.Reload()
if 'lr' in ea.Tags()['scalars']:
events = ea.Scalars('lr')
for event in events:
lr_data.append(event.value)
steps.append(event.step)
if lr_data:
plt.figure(figsize=(10, 6))
plt.plot(steps, lr_data, '-', linewidth=2)
plt.title('Learning Rate Schedule')
plt.xlabel('Training Steps')
plt.ylabel('Learning Rate')
plt.grid(True)
plt.margins(x=0.02)
plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0))
plt.savefig('learning_rate_schedule.png', dpi=300, bbox_inches='tight')
plt.close()
def train_model(epochs=None, steps=None, ckpt_path=None, interupt_steps=SmollmConfig.max_steps):
"""
Train the model for specified number of epochs or steps
:param epochs: Number of epochs to train (optional)
:param steps: Number of steps to train (optional)
:param ckpt_path: Path to checkpoint for resuming training
:param interupt_steps: Number of steps after which to interrupt training
Note: Provide either epochs or steps, not both
"""
# Set compilation mode for PyTorch 2.0+
if hasattr(torch, 'compile'):
torch._dynamo.config.suppress_errors = True
torch._dynamo.config.verbose = False
torch.set_float32_matmul_precision('high')
# Initialize data module with reduced workers and batch size
data_module = CosmopediaDataModule(
batch_size=SmollmConfig.batch_size, # Reduced from 32
num_workers=SmollmConfig.num_workers, # Reduced from 4
shuffle_buffer_size=SmollmConfig.shuffle_buffer_size,
max_length=SmollmConfig.block_size
)
# Initialize model
model = LitSmollmv2(total_epochs=epochs, total_steps=steps, interupt_steps=interupt_steps)
# Setup callbacks with reduced frequency
checkpoint_callback = ModelCheckpoint(
dirpath='checkpoints',
filename='smollmv2-{step:05d}-{val_loss:.2f}',
save_top_k=CheckpointConfig.save_top_k, # Save only the best model
monitor=CheckpointConfig.monitor, # Monitor training loss instead of validation loss
mode=CheckpointConfig.mode,
save_last=CheckpointConfig.save_last,
every_n_train_steps=CheckpointConfig.checkpoint_every, # Reduced checkpoint frequency
save_on_train_epoch_end=CheckpointConfig.save_on_train_epoch_end
)
lr_monitor = LearningRateMonitor(logging_interval='step')
# Setup logger
logger = TensorBoardLogger("lightning_logs", name="smollmv2", log_graph=True)
# Add gradient scaler for mixed precision training
scaler = torch.cuda.amp.GradScaler() if torch.cuda.is_available() else None
# Initialize trainer with performance monitoring
trainer_kwargs = {
'accelerator': TrainerConfig.accelerator,
'devices': TrainerConfig.devices,
'callbacks': [checkpoint_callback, lr_monitor],
'logger': logger,
'precision': TrainerConfig.precision,
'log_every_n_steps': TrainerConfig.log_every_n_steps,
'strategy': TrainerConfig.strategy,
'deterministic': TrainerConfig.deterministic,
'benchmark': TrainerConfig.benchmark,
'enable_progress_bar': TrainerConfig.enable_progress_bar,
'enable_model_summary': TrainerConfig.enable_model_summary,
'profiler': TrainerConfig.profiler,
'gradient_clip_val': TrainerConfig.gradient_clip_val,
'accumulate_grad_batches': TrainerConfig.accumulate_grad_batches,
'val_check_interval': TrainerConfig.val_check_interval,
'check_val_every_n_epoch': TrainerConfig.check_val_every_n_epoch
}
# Add either max_epochs or max_steps
if epochs is not None:
trainer_kwargs['max_epochs'] = epochs
else:
trainer_kwargs['max_steps'] = steps
trainer = pl.Trainer(**trainer_kwargs)
# Train with performance monitoring
print("\nStarting training with performance monitoring...")
print("Format: step | loss | iteration time | tokens per second | GPU memory\n")
# Enable garbage collection
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
try:
trainer.fit(model, data_module, ckpt_path=ckpt_path)
except KeyboardInterrupt:
print("\nTraining interrupted by user. Saving checkpoint...")
if not os.path.exists('checkpoints'):
os.makedirs('checkpoints')
trainer.save_checkpoint("checkpoints/interrupted_training.ckpt")
print("Checkpoint saved. Exiting...")
except Exception as e:
print(f"An error occurred during training: {str(e)}")
if torch.cuda.is_available():
torch.cuda.empty_cache()
raise e
return checkpoint_callback.best_model_path
def get_latest_checkpoint():
"""
Find the latest checkpoint in the checkpoints directory
"""
checkpoint_dir = 'checkpoints'
if not os.path.exists(checkpoint_dir):
return None
checkpoints = [f for f in os.listdir(checkpoint_dir) if f.endswith('.ckpt')]
if not checkpoints:
return None
latest_checkpoint = max(
[os.path.join(checkpoint_dir, f) for f in checkpoints],
key=os.path.getmtime
)
return latest_checkpoint
def main(interupt_steps=SmollmConfig.max_steps):
"""
Main function to handle training workflow
"""
# Ask user for training mode
mode = input("Train by epochs or steps? (e/s): ").lower()
if mode == 'e':
total_epochs = int(input("Enter number of epochs: "))
steps = None
else:
steps = int(input("Enter number of steps: "))
total_epochs = None
try:
latest_checkpoint = get_latest_checkpoint()
if latest_checkpoint and os.path.exists(latest_checkpoint):
print(f"\nFound existing checkpoint: {latest_checkpoint}")
user_input = input("Resume training from checkpoint? (y/n): ").lower()
if user_input == 'y':
print(f"\nResuming training from checkpoint: {latest_checkpoint}")
train_model(epochs=total_epochs, steps=steps, ckpt_path=latest_checkpoint, interupt_steps=interupt_steps)
else:
print("\nStarting fresh training...")
best_model_path = train_model(epochs=total_epochs, steps=steps, interupt_steps=interupt_steps)
else:
print("\nNo checkpoints found. Starting fresh training...")
best_model_path = train_model(epochs=total_epochs, steps=steps, interupt_steps=interupt_steps)
print("\nGenerating learning rate plot...")
plot_learning_rate("lightning_logs")
print("Learning rate plot saved as 'learning_rate_schedule.png'")
except Exception as e:
print(f"An error occurred during training: {str(e)}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main() |