Shilpaj commited on
Commit
c0a458a
·
1 Parent(s): 6f5f635

Chore: Removed unused files

Browse files
Files changed (2) hide show
  1. scripts/app.py +0 -74
  2. scripts/training/model.py +0 -37
scripts/app.py DELETED
@@ -1,74 +0,0 @@
1
- @app.post("/train")
2
- async def train_model(config: dict):
3
- network_config = NetworkConfig()
4
- network_config.update(**config)
5
-
6
- # Create model with configured architecture
7
- model = Net(
8
- block1=network_config.block1,
9
- block2=network_config.block2,
10
- block3=network_config.block3
11
- )
12
-
13
- # Start training with websocket updates
14
- result = await train(model, network_config)
15
- return result
16
-
17
- @app.websocket("/ws/compare")
18
- async def websocket_compare_endpoint(websocket: WebSocket):
19
- await websocket.accept()
20
- try:
21
- while True:
22
- data = await websocket.receive_json()
23
- if data.get("type") == "start_comparison":
24
- # Create and train both models
25
- model1_config = NetworkConfig()
26
- model2_config = NetworkConfig()
27
-
28
- # Update configs with received data
29
- model1_config.update(**data["model1"])
30
- model2_config.update(**data["model2"])
31
-
32
- # Create models with respective configurations
33
- model1 = Net(
34
- block1=model1_config.block1,
35
- block2=model1_config.block2,
36
- block3=model1_config.block3
37
- )
38
-
39
- model2 = Net(
40
- block1=model2_config.block1,
41
- block2=model2_config.block2,
42
- block3=model2_config.block3
43
- )
44
-
45
- # Train both models concurrently
46
- tasks = [
47
- train(model1, model1_config, websocket),
48
- train(model2, model2_config, websocket)
49
- ]
50
-
51
- results = await asyncio.gather(*tasks)
52
-
53
- # Send completion message
54
- await websocket.send_json({
55
- "type": "comparison_complete",
56
- "data": {
57
- "model1": results[0],
58
- "model2": results[1]
59
- }
60
- })
61
-
62
- except Exception as e:
63
- print(f"Error in websocket connection: {e}")
64
- finally:
65
- await websocket.close()
66
-
67
- @app.post("/compare")
68
- async def compare_models(request: Request):
69
- data = await request.json()
70
- return {"status": "started", "message": "Model comparison initiated"}
71
-
72
- @app.get("/train/compare")
73
- async def compare_page(request: Request):
74
- return templates.TemplateResponse("train_compare.html", {"request": request})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scripts/training/model.py DELETED
@@ -1,37 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
- from torch.nn import Conv2d, MaxPool2d, Linear, Sequential, ReLU, LogSoftmax, Flatten
5
-
6
-
7
- class Net(torch.nn.Module):
8
- def __init__(self, block1=32, block2=64, block3=128):
9
- """
10
- Constructor
11
- """
12
- super(Net, self).__init__()
13
-
14
- # Define model architecture with configurable blocks
15
- self.conv1 = nn.Conv2d(1, block1, kernel_size=3)
16
- self.conv2 = nn.Conv2d(block1, block2, kernel_size=3)
17
- self.conv3 = nn.Conv2d(block2, block3, kernel_size=3)
18
- self.conv4 = nn.Conv2d(block3, block3*2, kernel_size=3)
19
-
20
- # Calculate the input size for the first fully connected layer
21
- self.fc1 = nn.Linear(block3*2*16, 50)
22
- self.fc2 = nn.Linear(50, 10)
23
-
24
- def forward(self, x):
25
- """
26
- Forward pass for model training
27
- :param x: Input layer
28
- :return: Output of the model
29
- """
30
- x = F.relu(self.conv1(x))
31
- x = F.relu(F.max_pool2d(self.conv2(x), 2))
32
- x = F.relu(self.conv3(x))
33
- x = F.relu(F.max_pool2d(self.conv4(x), 2))
34
- x = x.view(x.size(0), -1)
35
- x = F.relu(self.fc1(x))
36
- x = self.fc2(x)
37
- return x