Spaces:
Sleeping
Sleeping
Feat: Craete frontend and backend for the project
Browse files- static/css/style.css +278 -0
- static/js/inference.js +99 -0
- static/js/train.js +229 -0
- static/js/train_compare.js +105 -0
- static/js/train_single.js +121 -0
- templates/index.html +41 -0
- templates/inference.html +41 -0
- templates/train.html +19 -0
- templates/train_compare.html +420 -0
- templates/train_single.html +374 -0
static/css/style.css
ADDED
|
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
:root {
|
| 2 |
+
--primary-color: #6366f1;
|
| 3 |
+
--background-dark: #0f172a;
|
| 4 |
+
--text-light: #e2e8f0;
|
| 5 |
+
--text-gray: #94a3b8;
|
| 6 |
+
--card-bg: #1e293b;
|
| 7 |
+
--gradient-start: #818cf8;
|
| 8 |
+
--gradient-end: #6366f1;
|
| 9 |
+
--gradient-hover-start: #6366f1;
|
| 10 |
+
--gradient-hover-end: #4f46e5;
|
| 11 |
+
}
|
| 12 |
+
|
| 13 |
+
body {
|
| 14 |
+
font-family: 'Inter', sans-serif;
|
| 15 |
+
margin: 0;
|
| 16 |
+
padding: 0;
|
| 17 |
+
background-color: var(--background-dark);
|
| 18 |
+
color: var(--text-light);
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
.container {
|
| 22 |
+
max-width: 1200px;
|
| 23 |
+
margin: 0 auto;
|
| 24 |
+
padding: 2rem;
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
h1 {
|
| 28 |
+
font-size: 3rem;
|
| 29 |
+
font-weight: 700;
|
| 30 |
+
text-align: center;
|
| 31 |
+
margin-bottom: 2rem;
|
| 32 |
+
background: linear-gradient(to right, #818cf8, #6366f1);
|
| 33 |
+
-webkit-background-clip: text;
|
| 34 |
+
-webkit-text-fill-color: transparent;
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
.button-container {
|
| 38 |
+
display: flex;
|
| 39 |
+
gap: 1rem;
|
| 40 |
+
justify-content: center;
|
| 41 |
+
margin: 2rem 0;
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
.btn {
|
| 45 |
+
padding: 0.75rem 1.5rem;
|
| 46 |
+
background: linear-gradient(135deg, var(--gradient-start), var(--gradient-end));
|
| 47 |
+
color: white;
|
| 48 |
+
border: none;
|
| 49 |
+
border-radius: 0.5rem;
|
| 50 |
+
cursor: pointer;
|
| 51 |
+
text-decoration: none;
|
| 52 |
+
font-size: 1rem;
|
| 53 |
+
font-weight: 500;
|
| 54 |
+
transition: all 0.3s ease;
|
| 55 |
+
position: relative;
|
| 56 |
+
z-index: 1;
|
| 57 |
+
overflow: hidden;
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
.btn::before {
|
| 61 |
+
content: '';
|
| 62 |
+
position: absolute;
|
| 63 |
+
top: 0;
|
| 64 |
+
left: 0;
|
| 65 |
+
right: 0;
|
| 66 |
+
bottom: 0;
|
| 67 |
+
background: linear-gradient(135deg, var(--gradient-hover-start), var(--gradient-hover-end));
|
| 68 |
+
opacity: 0;
|
| 69 |
+
transition: opacity 0.3s ease;
|
| 70 |
+
z-index: -1;
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
.btn:hover::before {
|
| 74 |
+
opacity: 1;
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
.btn:hover {
|
| 78 |
+
transform: translateY(-2px);
|
| 79 |
+
box-shadow: 0 4px 15px rgba(99, 102, 241, 0.5);
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
.card {
|
| 83 |
+
background-color: var(--card-bg);
|
| 84 |
+
border-radius: 1rem;
|
| 85 |
+
padding: 2rem;
|
| 86 |
+
margin: 1rem 0;
|
| 87 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 88 |
+
position: relative;
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
.card::before {
|
| 92 |
+
content: '';
|
| 93 |
+
position: absolute;
|
| 94 |
+
top: -1px;
|
| 95 |
+
left: -1px;
|
| 96 |
+
right: -1px;
|
| 97 |
+
bottom: -1px;
|
| 98 |
+
background: linear-gradient(135deg, var(--gradient-start), var(--gradient-end));
|
| 99 |
+
border-radius: 1rem;
|
| 100 |
+
z-index: -1;
|
| 101 |
+
opacity: 0.1;
|
| 102 |
+
transition: opacity 0.3s ease;
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
.card:hover::before {
|
| 106 |
+
opacity: 0.2;
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
.form-group {
|
| 110 |
+
margin-bottom: 1.5rem;
|
| 111 |
+
}
|
| 112 |
+
|
| 113 |
+
.form-group label {
|
| 114 |
+
display: block;
|
| 115 |
+
margin-bottom: 0.5rem;
|
| 116 |
+
color: var(--text-gray);
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
input[type="number"],
|
| 120 |
+
select {
|
| 121 |
+
width: 100%;
|
| 122 |
+
padding: 0.75rem;
|
| 123 |
+
border: 1px solid;
|
| 124 |
+
border-image: linear-gradient(135deg, var(--gradient-start), var(--gradient-end)) 1;
|
| 125 |
+
border-radius: 0.5rem;
|
| 126 |
+
background-color: #374151;
|
| 127 |
+
color: var(--text-light);
|
| 128 |
+
margin-bottom: 0.5rem;
|
| 129 |
+
transition: all 0.3s ease;
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
input[type="number"]:focus,
|
| 133 |
+
select:focus {
|
| 134 |
+
outline: none;
|
| 135 |
+
box-shadow: 0 0 0 2px rgba(99, 102, 241, 0.3);
|
| 136 |
+
}
|
| 137 |
+
|
| 138 |
+
#drawing-canvas {
|
| 139 |
+
background-color: white;
|
| 140 |
+
border-radius: 1rem;
|
| 141 |
+
margin: 2rem auto;
|
| 142 |
+
display: block;
|
| 143 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 144 |
+
}
|
| 145 |
+
|
| 146 |
+
.training-form {
|
| 147 |
+
background-color: var(--card-bg);
|
| 148 |
+
border-radius: 1rem;
|
| 149 |
+
padding: 2rem;
|
| 150 |
+
margin-top: 2rem;
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
.results {
|
| 154 |
+
background-color: var(--card-bg);
|
| 155 |
+
border-radius: 1rem;
|
| 156 |
+
padding: 2rem;
|
| 157 |
+
margin-top: 2rem;
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
+
#training-logs {
|
| 161 |
+
font-family: 'Roboto Mono', monospace;
|
| 162 |
+
color: var(--text-gray);
|
| 163 |
+
padding: 1rem;
|
| 164 |
+
border-radius: 0.5rem;
|
| 165 |
+
background-color: #374151;
|
| 166 |
+
margin-top: 1rem;
|
| 167 |
+
border: 1px solid;
|
| 168 |
+
border-image: linear-gradient(135deg, var(--gradient-start), var(--gradient-end)) 1;
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
.plot-container {
|
| 172 |
+
background-color: var(--card-bg);
|
| 173 |
+
border-radius: 1rem;
|
| 174 |
+
padding: 1rem;
|
| 175 |
+
margin: 1rem 0;
|
| 176 |
+
border: 1px solid;
|
| 177 |
+
border-image: linear-gradient(135deg, var(--gradient-start), var(--gradient-end)) 1;
|
| 178 |
+
}
|
| 179 |
+
|
| 180 |
+
h2, h3 {
|
| 181 |
+
background: linear-gradient(to right, var(--gradient-start), var(--gradient-end));
|
| 182 |
+
-webkit-background-clip: text;
|
| 183 |
+
-webkit-text-fill-color: transparent;
|
| 184 |
+
margin-bottom: 1.5rem;
|
| 185 |
+
}
|
| 186 |
+
|
| 187 |
+
.features-grid {
|
| 188 |
+
display: grid;
|
| 189 |
+
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
|
| 190 |
+
gap: 1.5rem;
|
| 191 |
+
margin-top: 2rem;
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
+
.hero-text {
|
| 195 |
+
font-size: 1.25rem;
|
| 196 |
+
text-align: center;
|
| 197 |
+
color: var(--text-light);
|
| 198 |
+
line-height: 1.6;
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
@media (max-width: 768px) {
|
| 202 |
+
.container {
|
| 203 |
+
padding: 1rem;
|
| 204 |
+
}
|
| 205 |
+
|
| 206 |
+
h1 {
|
| 207 |
+
font-size: 2.5rem;
|
| 208 |
+
}
|
| 209 |
+
|
| 210 |
+
.features-grid {
|
| 211 |
+
grid-template-columns: 1fr;
|
| 212 |
+
}
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
.models-grid {
|
| 216 |
+
display: grid;
|
| 217 |
+
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
|
| 218 |
+
gap: 2rem;
|
| 219 |
+
margin-bottom: 2rem;
|
| 220 |
+
}
|
| 221 |
+
|
| 222 |
+
.model-config {
|
| 223 |
+
background: var(--card-bg);
|
| 224 |
+
padding: 1.5rem;
|
| 225 |
+
border-radius: 1rem;
|
| 226 |
+
position: relative;
|
| 227 |
+
}
|
| 228 |
+
|
| 229 |
+
.model-config::before {
|
| 230 |
+
content: '';
|
| 231 |
+
position: absolute;
|
| 232 |
+
top: -1px;
|
| 233 |
+
left: -1px;
|
| 234 |
+
right: -1px;
|
| 235 |
+
bottom: -1px;
|
| 236 |
+
background: linear-gradient(135deg, var(--gradient-start), var(--gradient-end));
|
| 237 |
+
border-radius: 1rem;
|
| 238 |
+
z-index: -1;
|
| 239 |
+
opacity: 0.1;
|
| 240 |
+
transition: opacity 0.3s ease;
|
| 241 |
+
}
|
| 242 |
+
|
| 243 |
+
.model-config:hover::before {
|
| 244 |
+
opacity: 0.2;
|
| 245 |
+
}
|
| 246 |
+
|
| 247 |
+
.kernel-inputs {
|
| 248 |
+
display: grid;
|
| 249 |
+
grid-template-columns: repeat(2, 1fr);
|
| 250 |
+
gap: 0.5rem;
|
| 251 |
+
}
|
| 252 |
+
|
| 253 |
+
#comparison-logs {
|
| 254 |
+
display: grid;
|
| 255 |
+
grid-template-columns: repeat(2, 1fr);
|
| 256 |
+
gap: 1rem;
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
.comparison-model {
|
| 260 |
+
padding: 1rem;
|
| 261 |
+
background: #374151;
|
| 262 |
+
border-radius: 0.5rem;
|
| 263 |
+
}
|
| 264 |
+
|
| 265 |
+
.comparison-model h4 {
|
| 266 |
+
margin-top: 0;
|
| 267 |
+
color: var(--text-light);
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
@media (max-width: 768px) {
|
| 271 |
+
.models-grid {
|
| 272 |
+
grid-template-columns: 1fr;
|
| 273 |
+
}
|
| 274 |
+
|
| 275 |
+
#comparison-logs {
|
| 276 |
+
grid-template-columns: 1fr;
|
| 277 |
+
}
|
| 278 |
+
}
|
static/js/inference.js
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
let canvas, ctx;
|
| 2 |
+
|
| 3 |
+
window.onload = function() {
|
| 4 |
+
canvas = document.getElementById('drawing-canvas');
|
| 5 |
+
ctx = canvas.getContext('2d');
|
| 6 |
+
|
| 7 |
+
setupCanvas();
|
| 8 |
+
};
|
| 9 |
+
|
| 10 |
+
function setupCanvas() {
|
| 11 |
+
ctx.fillStyle = "white";
|
| 12 |
+
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
| 13 |
+
|
| 14 |
+
let drawing = false;
|
| 15 |
+
|
| 16 |
+
canvas.addEventListener('mousedown', startDrawing);
|
| 17 |
+
canvas.addEventListener('mousemove', draw);
|
| 18 |
+
canvas.addEventListener('mouseup', stopDrawing);
|
| 19 |
+
canvas.addEventListener('mouseout', stopDrawing);
|
| 20 |
+
|
| 21 |
+
function startDrawing(e) {
|
| 22 |
+
drawing = true;
|
| 23 |
+
draw(e);
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
function draw(e) {
|
| 27 |
+
if (!drawing) return;
|
| 28 |
+
|
| 29 |
+
const rect = canvas.getBoundingClientRect();
|
| 30 |
+
const x = e.clientX - rect.left;
|
| 31 |
+
const y = e.clientY - rect.top;
|
| 32 |
+
|
| 33 |
+
ctx.lineWidth = 15;
|
| 34 |
+
ctx.lineCap = 'round';
|
| 35 |
+
ctx.strokeStyle = 'black';
|
| 36 |
+
ctx.lineTo(x, y);
|
| 37 |
+
ctx.stroke();
|
| 38 |
+
ctx.beginPath();
|
| 39 |
+
ctx.moveTo(x, y);
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
function stopDrawing() {
|
| 43 |
+
drawing = false;
|
| 44 |
+
ctx.beginPath();
|
| 45 |
+
}
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
function clearCanvas() {
|
| 49 |
+
ctx.fillStyle = "white";
|
| 50 |
+
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
async function predict() {
|
| 54 |
+
const modelSelect = document.getElementById('model-select');
|
| 55 |
+
const selectedModel = modelSelect.value;
|
| 56 |
+
|
| 57 |
+
if (!selectedModel) {
|
| 58 |
+
alert('Please train a model first');
|
| 59 |
+
return;
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
const imageData = canvas.toDataURL('image/png');
|
| 63 |
+
|
| 64 |
+
try {
|
| 65 |
+
const response = await fetch('/api/inference', {
|
| 66 |
+
method: 'POST',
|
| 67 |
+
headers: {
|
| 68 |
+
'Content-Type': 'application/json',
|
| 69 |
+
},
|
| 70 |
+
body: JSON.stringify({
|
| 71 |
+
image: imageData,
|
| 72 |
+
model_name: selectedModel
|
| 73 |
+
})
|
| 74 |
+
});
|
| 75 |
+
|
| 76 |
+
if (!response.ok) {
|
| 77 |
+
const error = await response.json();
|
| 78 |
+
throw new Error(error.detail || 'Prediction failed');
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
const data = await response.json();
|
| 82 |
+
displayPrediction(data.prediction);
|
| 83 |
+
} catch (error) {
|
| 84 |
+
console.error('Error:', error);
|
| 85 |
+
alert(error.message || 'Error during prediction');
|
| 86 |
+
}
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
function displayPrediction(prediction) {
|
| 90 |
+
const resultDiv = document.getElementById('prediction-result');
|
| 91 |
+
resultDiv.classList.remove('hidden');
|
| 92 |
+
resultDiv.innerHTML = `
|
| 93 |
+
<h2>Prediction Result</h2>
|
| 94 |
+
<p class="prediction-text">Predicted Digit: ${prediction}</p>
|
| 95 |
+
<div class="confidence-bar">
|
| 96 |
+
<div class="confidence-level" style="width: 100%"></div>
|
| 97 |
+
</div>
|
| 98 |
+
`;
|
| 99 |
+
}
|
static/js/train.js
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
let ws;
|
| 2 |
+
let lossChart;
|
| 3 |
+
let accuracyChart;
|
| 4 |
+
|
| 5 |
+
function showTrainingForm(type) {
|
| 6 |
+
const singleForm = document.getElementById('single-model-form');
|
| 7 |
+
const compareForm = document.getElementById('compare-models-form');
|
| 8 |
+
|
| 9 |
+
if (type === 'single') {
|
| 10 |
+
singleForm.classList.remove('hidden');
|
| 11 |
+
compareForm.classList.add('hidden');
|
| 12 |
+
} else {
|
| 13 |
+
singleForm.classList.add('hidden');
|
| 14 |
+
compareForm.classList.remove('hidden');
|
| 15 |
+
}
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
function initializeCharts() {
|
| 19 |
+
const lossData = [{
|
| 20 |
+
name: 'Training Loss',
|
| 21 |
+
x: [],
|
| 22 |
+
y: [],
|
| 23 |
+
type: 'scatter'
|
| 24 |
+
}, {
|
| 25 |
+
name: 'Validation Loss',
|
| 26 |
+
x: [],
|
| 27 |
+
y: [],
|
| 28 |
+
type: 'scatter'
|
| 29 |
+
}];
|
| 30 |
+
|
| 31 |
+
const accuracyData = [{
|
| 32 |
+
name: 'Training Accuracy',
|
| 33 |
+
x: [],
|
| 34 |
+
y: [],
|
| 35 |
+
type: 'scatter'
|
| 36 |
+
}, {
|
| 37 |
+
name: 'Validation Accuracy',
|
| 38 |
+
x: [],
|
| 39 |
+
y: [],
|
| 40 |
+
type: 'scatter'
|
| 41 |
+
}];
|
| 42 |
+
|
| 43 |
+
Plotly.newPlot('loss-plot', lossData, {
|
| 44 |
+
title: 'Training and Validation Loss',
|
| 45 |
+
xaxis: { title: 'Iterations' },
|
| 46 |
+
yaxis: { title: 'Loss' }
|
| 47 |
+
});
|
| 48 |
+
|
| 49 |
+
Plotly.newPlot('accuracy-plot', accuracyData, {
|
| 50 |
+
title: 'Training and Validation Accuracy',
|
| 51 |
+
xaxis: { title: 'Iterations' },
|
| 52 |
+
yaxis: { title: 'Accuracy (%)' }
|
| 53 |
+
});
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
function updateCharts(data) {
|
| 57 |
+
const iteration = data.epoch * data.batch;
|
| 58 |
+
|
| 59 |
+
Plotly.extendTraces('loss-plot', {
|
| 60 |
+
x: [[iteration], [iteration]],
|
| 61 |
+
y: [[data.train_loss], [data.val_loss]]
|
| 62 |
+
}, [0, 1]);
|
| 63 |
+
|
| 64 |
+
Plotly.extendTraces('accuracy-plot', {
|
| 65 |
+
x: [[iteration], [iteration]],
|
| 66 |
+
y: [[data.train_acc], [data.val_acc]]
|
| 67 |
+
}, [0, 1]);
|
| 68 |
+
|
| 69 |
+
// Update training logs
|
| 70 |
+
const logsDiv = document.getElementById('training-logs');
|
| 71 |
+
logsDiv.innerHTML = `
|
| 72 |
+
<p>Epoch: ${data.epoch + 1}</p>
|
| 73 |
+
<p>Training Loss: ${data.train_loss.toFixed(4)}</p>
|
| 74 |
+
<p>Training Accuracy: ${data.train_acc.toFixed(2)}%</p>
|
| 75 |
+
<p>Validation Loss: ${data.val_loss.toFixed(4)}</p>
|
| 76 |
+
<p>Validation Accuracy: ${data.val_acc.toFixed(2)}%</p>
|
| 77 |
+
`;
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
async function trainSingleModel() {
|
| 81 |
+
const config = {
|
| 82 |
+
kernels: [
|
| 83 |
+
parseInt(document.getElementById('kernel1').value),
|
| 84 |
+
parseInt(document.getElementById('kernel2').value),
|
| 85 |
+
parseInt(document.getElementById('kernel3').value)
|
| 86 |
+
],
|
| 87 |
+
optimizer: document.getElementById('optimizer').value,
|
| 88 |
+
batch_size: parseInt(document.getElementById('batch_size').value),
|
| 89 |
+
epochs: parseInt(document.getElementById('epochs').value)
|
| 90 |
+
};
|
| 91 |
+
|
| 92 |
+
// Show progress section and initialize charts
|
| 93 |
+
document.getElementById('training-progress').classList.remove('hidden');
|
| 94 |
+
initializeCharts();
|
| 95 |
+
|
| 96 |
+
// Connect to WebSocket
|
| 97 |
+
ws = new WebSocket(`ws://${window.location.host}/ws/train`);
|
| 98 |
+
ws.onmessage = function(event) {
|
| 99 |
+
const data = JSON.parse(event.data);
|
| 100 |
+
updateCharts(data);
|
| 101 |
+
};
|
| 102 |
+
|
| 103 |
+
try {
|
| 104 |
+
const response = await fetch('/api/train_single', {
|
| 105 |
+
method: 'POST',
|
| 106 |
+
headers: {
|
| 107 |
+
'Content-Type': 'application/json',
|
| 108 |
+
},
|
| 109 |
+
body: JSON.stringify(config)
|
| 110 |
+
});
|
| 111 |
+
const data = await response.json();
|
| 112 |
+
|
| 113 |
+
if (data.status === 'success') {
|
| 114 |
+
alert('Training completed successfully!');
|
| 115 |
+
}
|
| 116 |
+
} catch (error) {
|
| 117 |
+
console.error('Error:', error);
|
| 118 |
+
alert('Error during training. Please check console for details.');
|
| 119 |
+
}
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
async function compareModels() {
|
| 123 |
+
const config = {
|
| 124 |
+
model1: {
|
| 125 |
+
kernels: [
|
| 126 |
+
parseInt(document.getElementById('model1_kernel1').value),
|
| 127 |
+
parseInt(document.getElementById('model1_kernel2').value),
|
| 128 |
+
parseInt(document.getElementById('model1_kernel3').value)
|
| 129 |
+
],
|
| 130 |
+
optimizer: document.getElementById('model1_optimizer').value,
|
| 131 |
+
batch_size: parseInt(document.getElementById('model1_batch_size').value),
|
| 132 |
+
epochs: parseInt(document.getElementById('model1_epochs').value)
|
| 133 |
+
},
|
| 134 |
+
model2: {
|
| 135 |
+
kernels: [
|
| 136 |
+
parseInt(document.getElementById('model2_kernel1').value),
|
| 137 |
+
parseInt(document.getElementById('model2_kernel2').value),
|
| 138 |
+
parseInt(document.getElementById('model2_kernel3').value)
|
| 139 |
+
],
|
| 140 |
+
optimizer: document.getElementById('model2_optimizer').value,
|
| 141 |
+
batch_size: parseInt(document.getElementById('model2_batch_size').value),
|
| 142 |
+
epochs: parseInt(document.getElementById('model2_epochs').value)
|
| 143 |
+
}
|
| 144 |
+
};
|
| 145 |
+
|
| 146 |
+
// Show comparison progress section
|
| 147 |
+
document.getElementById('comparison-progress').classList.remove('hidden');
|
| 148 |
+
initializeComparisonCharts();
|
| 149 |
+
|
| 150 |
+
try {
|
| 151 |
+
const response = await fetch('/api/train_compare', {
|
| 152 |
+
method: 'POST',
|
| 153 |
+
headers: {
|
| 154 |
+
'Content-Type': 'application/json',
|
| 155 |
+
},
|
| 156 |
+
body: JSON.stringify(config)
|
| 157 |
+
});
|
| 158 |
+
const data = await response.json();
|
| 159 |
+
|
| 160 |
+
if (data.status === 'success') {
|
| 161 |
+
displayComparisonResults(data);
|
| 162 |
+
alert('Model comparison completed successfully!');
|
| 163 |
+
}
|
| 164 |
+
} catch (error) {
|
| 165 |
+
console.error('Error:', error);
|
| 166 |
+
alert('Error during model comparison. Please check console for details.');
|
| 167 |
+
}
|
| 168 |
+
}
|
| 169 |
+
|
| 170 |
+
function initializeComparisonCharts() {
|
| 171 |
+
const lossData = [{
|
| 172 |
+
name: 'Model 1 Loss',
|
| 173 |
+
x: [],
|
| 174 |
+
y: [],
|
| 175 |
+
type: 'scatter'
|
| 176 |
+
}, {
|
| 177 |
+
name: 'Model 2 Loss',
|
| 178 |
+
x: [],
|
| 179 |
+
y: [],
|
| 180 |
+
type: 'scatter'
|
| 181 |
+
}];
|
| 182 |
+
|
| 183 |
+
const accuracyData = [{
|
| 184 |
+
name: 'Model 1 Accuracy',
|
| 185 |
+
x: [],
|
| 186 |
+
y: [],
|
| 187 |
+
type: 'scatter'
|
| 188 |
+
}, {
|
| 189 |
+
name: 'Model 2 Accuracy',
|
| 190 |
+
x: [],
|
| 191 |
+
y: [],
|
| 192 |
+
type: 'scatter'
|
| 193 |
+
}];
|
| 194 |
+
|
| 195 |
+
Plotly.newPlot('comparison-loss-plot', lossData, {
|
| 196 |
+
title: 'Loss Comparison',
|
| 197 |
+
xaxis: { title: 'Iterations' },
|
| 198 |
+
yaxis: { title: 'Loss' }
|
| 199 |
+
});
|
| 200 |
+
|
| 201 |
+
Plotly.newPlot('comparison-accuracy-plot', accuracyData, {
|
| 202 |
+
title: 'Accuracy Comparison',
|
| 203 |
+
xaxis: { title: 'Iterations' },
|
| 204 |
+
yaxis: { title: 'Accuracy (%)' }
|
| 205 |
+
});
|
| 206 |
+
}
|
| 207 |
+
|
| 208 |
+
function displayComparisonResults(data) {
|
| 209 |
+
const logsDiv = document.getElementById('comparison-logs');
|
| 210 |
+
logsDiv.innerHTML = `
|
| 211 |
+
<div class="comparison-model">
|
| 212 |
+
<h4>Model 1</h4>
|
| 213 |
+
<p>Final Loss: ${data.model1_results.history.train_loss.slice(-1)[0].toFixed(4)}</p>
|
| 214 |
+
<p>Final Accuracy: ${data.model1_results.history.train_acc.slice(-1)[0].toFixed(2)}%</p>
|
| 215 |
+
<p>Model Name: ${data.model1_results.model_name}</p>
|
| 216 |
+
</div>
|
| 217 |
+
<div class="comparison-model">
|
| 218 |
+
<h4>Model 2</h4>
|
| 219 |
+
<p>Final Loss: ${data.model2_results.history.train_loss.slice(-1)[0].toFixed(4)}</p>
|
| 220 |
+
<p>Final Accuracy: ${data.model2_results.history.train_acc.slice(-1)[0].toFixed(2)}%</p>
|
| 221 |
+
<p>Model Name: ${data.model2_results.model_name}</p>
|
| 222 |
+
</div>
|
| 223 |
+
`;
|
| 224 |
+
}
|
| 225 |
+
|
| 226 |
+
function displayResults(data) {
|
| 227 |
+
const resultsDiv = document.getElementById('training-results');
|
| 228 |
+
// Display training results
|
| 229 |
+
}
|
static/js/train_compare.js
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
let ws;
|
| 2 |
+
|
| 3 |
+
function initializeComparisonCharts() {
|
| 4 |
+
const lossData = [{
|
| 5 |
+
name: 'Model 1 Loss',
|
| 6 |
+
x: [],
|
| 7 |
+
y: [],
|
| 8 |
+
type: 'scatter'
|
| 9 |
+
}, {
|
| 10 |
+
name: 'Model 2 Loss',
|
| 11 |
+
x: [],
|
| 12 |
+
y: [],
|
| 13 |
+
type: 'scatter'
|
| 14 |
+
}];
|
| 15 |
+
|
| 16 |
+
const accuracyData = [{
|
| 17 |
+
name: 'Model 1 Accuracy',
|
| 18 |
+
x: [],
|
| 19 |
+
y: [],
|
| 20 |
+
type: 'scatter'
|
| 21 |
+
}, {
|
| 22 |
+
name: 'Model 2 Accuracy',
|
| 23 |
+
x: [],
|
| 24 |
+
y: [],
|
| 25 |
+
type: 'scatter'
|
| 26 |
+
}];
|
| 27 |
+
|
| 28 |
+
Plotly.newPlot('comparison-loss-plot', lossData, {
|
| 29 |
+
title: 'Loss Comparison',
|
| 30 |
+
xaxis: { title: 'Iterations' },
|
| 31 |
+
yaxis: { title: 'Loss' }
|
| 32 |
+
});
|
| 33 |
+
|
| 34 |
+
Plotly.newPlot('comparison-accuracy-plot', accuracyData, {
|
| 35 |
+
title: 'Accuracy Comparison',
|
| 36 |
+
xaxis: { title: 'Iterations' },
|
| 37 |
+
yaxis: { title: 'Accuracy (%)' }
|
| 38 |
+
});
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
async function compareModels() {
|
| 42 |
+
const config = {
|
| 43 |
+
model1: {
|
| 44 |
+
kernels: [
|
| 45 |
+
parseInt(document.getElementById('model1_kernel1').value),
|
| 46 |
+
parseInt(document.getElementById('model1_kernel2').value),
|
| 47 |
+
parseInt(document.getElementById('model1_kernel3').value)
|
| 48 |
+
],
|
| 49 |
+
optimizer: document.getElementById('model1_optimizer').value,
|
| 50 |
+
batch_size: parseInt(document.getElementById('model1_batch_size').value),
|
| 51 |
+
epochs: parseInt(document.getElementById('model1_epochs').value)
|
| 52 |
+
},
|
| 53 |
+
model2: {
|
| 54 |
+
kernels: [
|
| 55 |
+
parseInt(document.getElementById('model2_kernel1').value),
|
| 56 |
+
parseInt(document.getElementById('model2_kernel2').value),
|
| 57 |
+
parseInt(document.getElementById('model2_kernel3').value)
|
| 58 |
+
],
|
| 59 |
+
optimizer: document.getElementById('model2_optimizer').value,
|
| 60 |
+
batch_size: parseInt(document.getElementById('model2_batch_size').value),
|
| 61 |
+
epochs: parseInt(document.getElementById('model2_epochs').value)
|
| 62 |
+
}
|
| 63 |
+
};
|
| 64 |
+
|
| 65 |
+
// Show comparison progress section
|
| 66 |
+
document.getElementById('comparison-progress').classList.remove('hidden');
|
| 67 |
+
initializeComparisonCharts();
|
| 68 |
+
|
| 69 |
+
try {
|
| 70 |
+
const response = await fetch('/api/train_compare', {
|
| 71 |
+
method: 'POST',
|
| 72 |
+
headers: {
|
| 73 |
+
'Content-Type': 'application/json',
|
| 74 |
+
},
|
| 75 |
+
body: JSON.stringify(config)
|
| 76 |
+
});
|
| 77 |
+
const data = await response.json();
|
| 78 |
+
|
| 79 |
+
if (data.status === 'success') {
|
| 80 |
+
displayComparisonResults(data);
|
| 81 |
+
alert('Model comparison completed successfully!');
|
| 82 |
+
}
|
| 83 |
+
} catch (error) {
|
| 84 |
+
console.error('Error:', error);
|
| 85 |
+
alert('Error during model comparison. Please check console for details.');
|
| 86 |
+
}
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
function displayComparisonResults(data) {
|
| 90 |
+
const logsDiv = document.getElementById('comparison-logs');
|
| 91 |
+
logsDiv.innerHTML = `
|
| 92 |
+
<div class="comparison-model">
|
| 93 |
+
<h4>Model 1</h4>
|
| 94 |
+
<p>Final Loss: ${data.model1_results.history.train_loss.slice(-1)[0].toFixed(4)}</p>
|
| 95 |
+
<p>Final Accuracy: ${data.model1_results.history.train_acc.slice(-1)[0].toFixed(2)}%</p>
|
| 96 |
+
<p>Model Name: ${data.model1_results.model_name}</p>
|
| 97 |
+
</div>
|
| 98 |
+
<div class="comparison-model">
|
| 99 |
+
<h4>Model 2</h4>
|
| 100 |
+
<p>Final Loss: ${data.model2_results.history.train_loss.slice(-1)[0].toFixed(4)}</p>
|
| 101 |
+
<p>Final Accuracy: ${data.model2_results.history.train_acc.slice(-1)[0].toFixed(2)}%</p>
|
| 102 |
+
<p>Model Name: ${data.model2_results.model_name}</p>
|
| 103 |
+
</div>
|
| 104 |
+
`;
|
| 105 |
+
}
|
static/js/train_single.js
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
let ws;
|
| 2 |
+
|
| 3 |
+
function initializeCharts() {
|
| 4 |
+
const lossData = [{
|
| 5 |
+
name: 'Training Loss',
|
| 6 |
+
x: [],
|
| 7 |
+
y: [],
|
| 8 |
+
type: 'scatter'
|
| 9 |
+
}, {
|
| 10 |
+
name: 'Validation Loss',
|
| 11 |
+
x: [],
|
| 12 |
+
y: [],
|
| 13 |
+
type: 'scatter'
|
| 14 |
+
}];
|
| 15 |
+
|
| 16 |
+
const accuracyData = [{
|
| 17 |
+
name: 'Training Accuracy',
|
| 18 |
+
x: [],
|
| 19 |
+
y: [],
|
| 20 |
+
type: 'scatter'
|
| 21 |
+
}, {
|
| 22 |
+
name: 'Validation Accuracy',
|
| 23 |
+
x: [],
|
| 24 |
+
y: [],
|
| 25 |
+
type: 'scatter'
|
| 26 |
+
}];
|
| 27 |
+
|
| 28 |
+
Plotly.newPlot('loss-plot', lossData, {
|
| 29 |
+
title: 'Training and Validation Loss',
|
| 30 |
+
xaxis: { title: 'Iterations' },
|
| 31 |
+
yaxis: { title: 'Loss' }
|
| 32 |
+
});
|
| 33 |
+
|
| 34 |
+
Plotly.newPlot('accuracy-plot', accuracyData, {
|
| 35 |
+
title: 'Training and Validation Accuracy',
|
| 36 |
+
xaxis: { title: 'Iterations' },
|
| 37 |
+
yaxis: { title: 'Accuracy (%)' }
|
| 38 |
+
});
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
function updateCharts(data) {
|
| 42 |
+
const iteration = data.epoch * data.batch;
|
| 43 |
+
|
| 44 |
+
Plotly.extendTraces('loss-plot', {
|
| 45 |
+
x: [[iteration], [iteration]],
|
| 46 |
+
y: [[data.train_loss], [data.val_loss]]
|
| 47 |
+
}, [0, 1]);
|
| 48 |
+
|
| 49 |
+
Plotly.extendTraces('accuracy-plot', {
|
| 50 |
+
x: [[iteration], [iteration]],
|
| 51 |
+
y: [[data.train_acc], [data.val_acc]]
|
| 52 |
+
}, [0, 1]);
|
| 53 |
+
|
| 54 |
+
// Update training logs
|
| 55 |
+
const logsDiv = document.getElementById('training-logs');
|
| 56 |
+
logsDiv.innerHTML = `
|
| 57 |
+
<p>Epoch: ${data.epoch + 1}</p>
|
| 58 |
+
<p>Training Loss: ${data.train_loss.toFixed(4)}</p>
|
| 59 |
+
<p>Training Accuracy: ${data.train_acc.toFixed(2)}%</p>
|
| 60 |
+
<p>Validation Loss: ${data.val_loss.toFixed(4)}</p>
|
| 61 |
+
<p>Validation Accuracy: ${data.val_acc.toFixed(2)}%</p>
|
| 62 |
+
`;
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
async function trainModel() {
|
| 66 |
+
console.log("Training started..."); // Debug log
|
| 67 |
+
const config = {
|
| 68 |
+
kernels: [
|
| 69 |
+
parseInt(document.getElementById('kernel1').value),
|
| 70 |
+
parseInt(document.getElementById('kernel2').value),
|
| 71 |
+
parseInt(document.getElementById('kernel3').value)
|
| 72 |
+
],
|
| 73 |
+
optimizer: document.getElementById('optimizer').value,
|
| 74 |
+
batch_size: parseInt(document.getElementById('batch_size').value),
|
| 75 |
+
epochs: parseInt(document.getElementById('epochs').value)
|
| 76 |
+
};
|
| 77 |
+
|
| 78 |
+
console.log("Config:", config); // Debug log
|
| 79 |
+
|
| 80 |
+
// Show progress section and initialize charts
|
| 81 |
+
document.getElementById('training-progress').classList.remove('hidden');
|
| 82 |
+
initializeCharts();
|
| 83 |
+
|
| 84 |
+
try {
|
| 85 |
+
// Connect to WebSocket
|
| 86 |
+
console.log("Connecting to WebSocket..."); // Debug log
|
| 87 |
+
ws = new WebSocket(`ws://${window.location.host}/ws/train`);
|
| 88 |
+
|
| 89 |
+
ws.onopen = function() {
|
| 90 |
+
console.log("WebSocket connection established");
|
| 91 |
+
// Send configuration once connected
|
| 92 |
+
ws.send(JSON.stringify(config));
|
| 93 |
+
console.log("Config sent to server"); // Debug log
|
| 94 |
+
};
|
| 95 |
+
|
| 96 |
+
ws.onmessage = function(event) {
|
| 97 |
+
console.log("Received message:", event.data); // Debug log
|
| 98 |
+
const data = JSON.parse(event.data);
|
| 99 |
+
if (data.status === "completed") {
|
| 100 |
+
alert('Training completed successfully!');
|
| 101 |
+
} else if (data.status === "error") {
|
| 102 |
+
alert('Error during training: ' + data.message);
|
| 103 |
+
} else {
|
| 104 |
+
updateCharts(data);
|
| 105 |
+
}
|
| 106 |
+
};
|
| 107 |
+
|
| 108 |
+
ws.onerror = function(error) {
|
| 109 |
+
console.error('WebSocket error:', error);
|
| 110 |
+
alert('Error connecting to training server');
|
| 111 |
+
};
|
| 112 |
+
|
| 113 |
+
ws.onclose = function() {
|
| 114 |
+
console.log('WebSocket connection closed');
|
| 115 |
+
};
|
| 116 |
+
|
| 117 |
+
} catch (error) {
|
| 118 |
+
console.error('Error:', error);
|
| 119 |
+
alert('Error during training: ' + error.message);
|
| 120 |
+
}
|
| 121 |
+
}
|
templates/index.html
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>MNIST Digit Classification</title>
|
| 7 |
+
<link rel="stylesheet" href="{{ url_for('static', path='/css/style.css') }}">
|
| 8 |
+
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap" rel="stylesheet">
|
| 9 |
+
</head>
|
| 10 |
+
<body>
|
| 11 |
+
<div class="container">
|
| 12 |
+
<h1>MNIST Digit Classification</h1>
|
| 13 |
+
<div class="card">
|
| 14 |
+
<p class="hero-text">Train and test neural networks for handwritten digit recognition using the MNIST dataset.</p>
|
| 15 |
+
</div>
|
| 16 |
+
<div class="button-container">
|
| 17 |
+
<a href="/train" class="btn">Train Model</a>
|
| 18 |
+
<a href="/inference" class="btn">Test Model</a>
|
| 19 |
+
</div>
|
| 20 |
+
|
| 21 |
+
<div class="features-grid">
|
| 22 |
+
<div class="card">
|
| 23 |
+
<h3>Train Models</h3>
|
| 24 |
+
<p>Configure and train custom neural networks with different architectures.</p>
|
| 25 |
+
</div>
|
| 26 |
+
<div class="card">
|
| 27 |
+
<h3>Compare Performance</h3>
|
| 28 |
+
<p>Train multiple models simultaneously and compare their performance.</p>
|
| 29 |
+
</div>
|
| 30 |
+
<div class="card">
|
| 31 |
+
<h3>Real-time Visualization</h3>
|
| 32 |
+
<p>Monitor training progress with live loss and accuracy curves.</p>
|
| 33 |
+
</div>
|
| 34 |
+
<div class="card">
|
| 35 |
+
<h3>Interactive Testing</h3>
|
| 36 |
+
<p>Draw digits and test the model's prediction capabilities in real-time.</p>
|
| 37 |
+
</div>
|
| 38 |
+
</div>
|
| 39 |
+
</div>
|
| 40 |
+
</body>
|
| 41 |
+
</html>
|
templates/inference.html
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>Test Model - MNIST</title>
|
| 7 |
+
<link rel="stylesheet" href="{{ url_for('static', path='/css/style.css') }}">
|
| 8 |
+
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap" rel="stylesheet">
|
| 9 |
+
</head>
|
| 10 |
+
<body>
|
| 11 |
+
<div class="container">
|
| 12 |
+
<h1>Test Your Model</h1>
|
| 13 |
+
<div class="card">
|
| 14 |
+
<p>Draw a digit (0-9) in the canvas below and click "Predict" to test the model.</p>
|
| 15 |
+
|
| 16 |
+
<div class="form-group">
|
| 17 |
+
<label for="model-select">Select Model</label>
|
| 18 |
+
<select id="model-select" required>
|
| 19 |
+
{% if available_models %}
|
| 20 |
+
{% for model in available_models %}
|
| 21 |
+
<option value="{{ model }}">{{ model }}</option>
|
| 22 |
+
{% endfor %}
|
| 23 |
+
{% else %}
|
| 24 |
+
<option value="">No models available - Train a model first</option>
|
| 25 |
+
{% endif %}
|
| 26 |
+
</select>
|
| 27 |
+
</div>
|
| 28 |
+
</div>
|
| 29 |
+
|
| 30 |
+
<canvas id="drawing-canvas" width="280" height="280"></canvas>
|
| 31 |
+
<div class="button-container">
|
| 32 |
+
<button onclick="clearCanvas()" class="btn">Clear Canvas</button>
|
| 33 |
+
<button onclick="predict()" class="btn" {% if not available_models %}disabled{% endif %}>Predict</button>
|
| 34 |
+
</div>
|
| 35 |
+
<div id="prediction-result" class="card hidden">
|
| 36 |
+
<!-- Prediction result will be displayed here -->
|
| 37 |
+
</div>
|
| 38 |
+
</div>
|
| 39 |
+
<script src="{{ url_for('static', path='/js/inference.js') }}"></script>
|
| 40 |
+
</body>
|
| 41 |
+
</html>
|
templates/train.html
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>Train Models - MNIST</title>
|
| 7 |
+
<link rel="stylesheet" href="{{ url_for('static', path='/css/style.css') }}">
|
| 8 |
+
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&family=Roboto+Mono&display=swap" rel="stylesheet">
|
| 9 |
+
</head>
|
| 10 |
+
<body>
|
| 11 |
+
<div class="container">
|
| 12 |
+
<h1>Train Your Model</h1>
|
| 13 |
+
<div class="button-container">
|
| 14 |
+
<a href="/train/single" class="btn">Train Single Model</a>
|
| 15 |
+
<a href="/train/compare" class="btn">Compare Models</a>
|
| 16 |
+
</div>
|
| 17 |
+
</div>
|
| 18 |
+
</body>
|
| 19 |
+
</html>
|
templates/train_compare.html
ADDED
|
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>Compare Models - MNIST</title>
|
| 7 |
+
<link rel="stylesheet" href="{{ url_for('static', path='/css/style.css') }}">
|
| 8 |
+
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
|
| 9 |
+
</head>
|
| 10 |
+
<body>
|
| 11 |
+
<div class="container">
|
| 12 |
+
<h1>Compare Models</h1>
|
| 13 |
+
<div class="models-grid">
|
| 14 |
+
<!-- Model 1 Configuration -->
|
| 15 |
+
<div class="model-config">
|
| 16 |
+
<h3>Model 1</h3>
|
| 17 |
+
<div class="network-config">
|
| 18 |
+
<h4>Network Architecture</h4>
|
| 19 |
+
<div class="block-config">
|
| 20 |
+
<div class="block">
|
| 21 |
+
<label for="model1_block1">Block-1:</label>
|
| 22 |
+
<select id="model1_block1" name="block1" class="form-select">
|
| 23 |
+
<option value="8">8</option>
|
| 24 |
+
<option value="16">16</option>
|
| 25 |
+
<option value="32" selected>32</option>
|
| 26 |
+
<option value="64">64</option>
|
| 27 |
+
<option value="128">128</option>
|
| 28 |
+
</select>
|
| 29 |
+
</div>
|
| 30 |
+
|
| 31 |
+
<div class="block">
|
| 32 |
+
<label for="model1_block2">Block-2:</label>
|
| 33 |
+
<select id="model1_block2" name="block2" class="form-select">
|
| 34 |
+
<option value="8">8</option>
|
| 35 |
+
<option value="16">16</option>
|
| 36 |
+
<option value="32">32</option>
|
| 37 |
+
<option value="64" selected>64</option>
|
| 38 |
+
<option value="128">128</option>
|
| 39 |
+
</select>
|
| 40 |
+
</div>
|
| 41 |
+
|
| 42 |
+
<div class="block">
|
| 43 |
+
<label for="model1_block3">Block-3:</label>
|
| 44 |
+
<select id="model1_block3" name="block3" class="form-select">
|
| 45 |
+
<option value="8">8</option>
|
| 46 |
+
<option value="16">16</option>
|
| 47 |
+
<option value="32">32</option>
|
| 48 |
+
<option value="64">64</option>
|
| 49 |
+
<option value="128" selected>128</option>
|
| 50 |
+
</select>
|
| 51 |
+
</div>
|
| 52 |
+
</div>
|
| 53 |
+
</div>
|
| 54 |
+
<div class="training-config">
|
| 55 |
+
<div class="config-item">
|
| 56 |
+
<label for="model1_optimizer">Optimizer:</label>
|
| 57 |
+
<select id="model1_optimizer" name="optimizer">
|
| 58 |
+
<option value="SGD" selected>SGD</option>
|
| 59 |
+
<option value="Adam">Adam</option>
|
| 60 |
+
</select>
|
| 61 |
+
</div>
|
| 62 |
+
<div class="config-item">
|
| 63 |
+
<label for="model1_batch_size">Batch Size:</label>
|
| 64 |
+
<select id="model1_batch_size" name="batch_size">
|
| 65 |
+
<option value="32">32</option>
|
| 66 |
+
<option value="64" selected>64</option>
|
| 67 |
+
<option value="128">128</option>
|
| 68 |
+
</select>
|
| 69 |
+
</div>
|
| 70 |
+
</div>
|
| 71 |
+
</div>
|
| 72 |
+
|
| 73 |
+
<!-- Model 2 Configuration -->
|
| 74 |
+
<div class="model-config">
|
| 75 |
+
<h3>Model 2</h3>
|
| 76 |
+
<div class="network-config">
|
| 77 |
+
<h4>Network Architecture</h4>
|
| 78 |
+
<div class="block-config">
|
| 79 |
+
<div class="block">
|
| 80 |
+
<label for="model2_block1">Block-1:</label>
|
| 81 |
+
<select id="model2_block1" name="block1" class="form-select">
|
| 82 |
+
<option value="8">8</option>
|
| 83 |
+
<option value="16">16</option>
|
| 84 |
+
<option value="32" selected>32</option>
|
| 85 |
+
<option value="64">64</option>
|
| 86 |
+
<option value="128">128</option>
|
| 87 |
+
</select>
|
| 88 |
+
</div>
|
| 89 |
+
|
| 90 |
+
<div class="block">
|
| 91 |
+
<label for="model2_block2">Block-2:</label>
|
| 92 |
+
<select id="model2_block2" name="block2" class="form-select">
|
| 93 |
+
<option value="8">8</option>
|
| 94 |
+
<option value="16">16</option>
|
| 95 |
+
<option value="32">32</option>
|
| 96 |
+
<option value="64" selected>64</option>
|
| 97 |
+
<option value="128">128</option>
|
| 98 |
+
</select>
|
| 99 |
+
</div>
|
| 100 |
+
|
| 101 |
+
<div class="block">
|
| 102 |
+
<label for="model2_block3">Block-3:</label>
|
| 103 |
+
<select id="model2_block3" name="block3" class="form-select">
|
| 104 |
+
<option value="8">8</option>
|
| 105 |
+
<option value="16">16</option>
|
| 106 |
+
<option value="32">32</option>
|
| 107 |
+
<option value="64">64</option>
|
| 108 |
+
<option value="128" selected>128</option>
|
| 109 |
+
</select>
|
| 110 |
+
</div>
|
| 111 |
+
</div>
|
| 112 |
+
</div>
|
| 113 |
+
<div class="training-config">
|
| 114 |
+
<div class="config-item">
|
| 115 |
+
<label for="model2_optimizer">Optimizer:</label>
|
| 116 |
+
<select id="model2_optimizer" name="optimizer">
|
| 117 |
+
<option value="SGD" selected>SGD</option>
|
| 118 |
+
<option value="Adam">Adam</option>
|
| 119 |
+
</select>
|
| 120 |
+
</div>
|
| 121 |
+
<div class="config-item">
|
| 122 |
+
<label for="model2_batch_size">Batch Size:</label>
|
| 123 |
+
<select id="model2_batch_size" name="batch_size">
|
| 124 |
+
<option value="32">32</option>
|
| 125 |
+
<option value="64" selected>64</option>
|
| 126 |
+
<option value="128">128</option>
|
| 127 |
+
</select>
|
| 128 |
+
</div>
|
| 129 |
+
</div>
|
| 130 |
+
</div>
|
| 131 |
+
</div>
|
| 132 |
+
|
| 133 |
+
<!-- Training Controls -->
|
| 134 |
+
<div class="controls">
|
| 135 |
+
<button id="startComparison" onclick="startComparison()">Start Comparison</button>
|
| 136 |
+
<button id="stopComparison" onclick="stopComparison()" disabled>Stop Comparison</button>
|
| 137 |
+
</div>
|
| 138 |
+
|
| 139 |
+
<!-- Training Progress -->
|
| 140 |
+
<div class="charts-container">
|
| 141 |
+
<div id="lossChart"></div>
|
| 142 |
+
<div id="accuracyChart"></div>
|
| 143 |
+
</div>
|
| 144 |
+
</div>
|
| 145 |
+
|
| 146 |
+
<style>
|
| 147 |
+
.container {
|
| 148 |
+
max-width: 1200px;
|
| 149 |
+
margin: 0 auto;
|
| 150 |
+
padding: 20px;
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
.models-grid {
|
| 154 |
+
display: grid;
|
| 155 |
+
grid-template-columns: 1fr 1fr;
|
| 156 |
+
gap: 20px;
|
| 157 |
+
margin-bottom: 20px;
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
+
.model-config {
|
| 161 |
+
padding: 20px;
|
| 162 |
+
border: 1px solid #ddd;
|
| 163 |
+
border-radius: 5px;
|
| 164 |
+
margin-bottom: 20px;
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
.network-config {
|
| 168 |
+
margin-bottom: 20px;
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
.network-config h4 {
|
| 172 |
+
margin: 0 0 15px 0;
|
| 173 |
+
font-size: 1.1em;
|
| 174 |
+
}
|
| 175 |
+
|
| 176 |
+
.block-config {
|
| 177 |
+
display: flex;
|
| 178 |
+
justify-content: space-between;
|
| 179 |
+
gap: 20px;
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
.block {
|
| 183 |
+
flex: 1;
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
.block label {
|
| 187 |
+
display: block;
|
| 188 |
+
margin-bottom: 5px;
|
| 189 |
+
font-weight: bold;
|
| 190 |
+
}
|
| 191 |
+
|
| 192 |
+
.training-config {
|
| 193 |
+
display: flex;
|
| 194 |
+
gap: 20px;
|
| 195 |
+
}
|
| 196 |
+
|
| 197 |
+
.config-item {
|
| 198 |
+
flex: 1;
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
.config-item label {
|
| 202 |
+
display: block;
|
| 203 |
+
margin-bottom: 5px;
|
| 204 |
+
font-weight: bold;
|
| 205 |
+
}
|
| 206 |
+
|
| 207 |
+
select {
|
| 208 |
+
width: 100%;
|
| 209 |
+
padding: 8px;
|
| 210 |
+
border: 1px solid #ddd;
|
| 211 |
+
border-radius: 4px;
|
| 212 |
+
}
|
| 213 |
+
|
| 214 |
+
.controls {
|
| 215 |
+
margin: 20px 0;
|
| 216 |
+
text-align: center;
|
| 217 |
+
}
|
| 218 |
+
|
| 219 |
+
button {
|
| 220 |
+
padding: 10px 20px;
|
| 221 |
+
margin-right: 10px;
|
| 222 |
+
border: none;
|
| 223 |
+
border-radius: 4px;
|
| 224 |
+
background-color: #007bff;
|
| 225 |
+
color: white;
|
| 226 |
+
cursor: pointer;
|
| 227 |
+
}
|
| 228 |
+
|
| 229 |
+
button:disabled {
|
| 230 |
+
background-color: #ccc;
|
| 231 |
+
cursor: not-allowed;
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
.charts-container {
|
| 235 |
+
display: flex;
|
| 236 |
+
flex-direction: column;
|
| 237 |
+
gap: 20px;
|
| 238 |
+
margin-top: 20px;
|
| 239 |
+
}
|
| 240 |
+
|
| 241 |
+
#lossChart, #accuracyChart {
|
| 242 |
+
height: 400px;
|
| 243 |
+
width: 100%;
|
| 244 |
+
}
|
| 245 |
+
|
| 246 |
+
h4 {
|
| 247 |
+
margin: 0 0 10px 0;
|
| 248 |
+
}
|
| 249 |
+
|
| 250 |
+
.section-title {
|
| 251 |
+
color: white;
|
| 252 |
+
font-weight: bold;
|
| 253 |
+
margin: 0 0 10px 0;
|
| 254 |
+
font-size: 1.1em;
|
| 255 |
+
text-transform: uppercase;
|
| 256 |
+
}
|
| 257 |
+
|
| 258 |
+
.network-config .section-title {
|
| 259 |
+
margin: 0 0 15px 0;
|
| 260 |
+
}
|
| 261 |
+
|
| 262 |
+
.config-item .section-title {
|
| 263 |
+
margin-bottom: 5px;
|
| 264 |
+
}
|
| 265 |
+
</style>
|
| 266 |
+
|
| 267 |
+
<script>
|
| 268 |
+
let ws;
|
| 269 |
+
let lossChart;
|
| 270 |
+
let accuracyChart;
|
| 271 |
+
|
| 272 |
+
// Initialize charts
|
| 273 |
+
document.addEventListener('DOMContentLoaded', function() {
|
| 274 |
+
// Loss chart configuration
|
| 275 |
+
const lossData = [
|
| 276 |
+
{
|
| 277 |
+
x: [],
|
| 278 |
+
y: [],
|
| 279 |
+
name: 'Model 1 Training Loss',
|
| 280 |
+
type: 'scatter'
|
| 281 |
+
},
|
| 282 |
+
{
|
| 283 |
+
x: [],
|
| 284 |
+
y: [],
|
| 285 |
+
name: 'Model 2 Training Loss',
|
| 286 |
+
type: 'scatter'
|
| 287 |
+
}
|
| 288 |
+
];
|
| 289 |
+
|
| 290 |
+
const lossLayout = {
|
| 291 |
+
title: 'Training Loss Comparison',
|
| 292 |
+
xaxis: {
|
| 293 |
+
title: 'Iterations',
|
| 294 |
+
rangemode: 'nonnegative'
|
| 295 |
+
},
|
| 296 |
+
yaxis: {
|
| 297 |
+
title: 'Loss',
|
| 298 |
+
rangemode: 'nonnegative'
|
| 299 |
+
}
|
| 300 |
+
};
|
| 301 |
+
|
| 302 |
+
// Accuracy chart configuration
|
| 303 |
+
const accuracyData = [
|
| 304 |
+
{
|
| 305 |
+
x: [],
|
| 306 |
+
y: [],
|
| 307 |
+
name: 'Model 1 Training Accuracy',
|
| 308 |
+
type: 'scatter'
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
x: [],
|
| 312 |
+
y: [],
|
| 313 |
+
name: 'Model 2 Training Accuracy',
|
| 314 |
+
type: 'scatter'
|
| 315 |
+
}
|
| 316 |
+
];
|
| 317 |
+
|
| 318 |
+
const accuracyLayout = {
|
| 319 |
+
title: 'Training Accuracy Comparison',
|
| 320 |
+
xaxis: {
|
| 321 |
+
title: 'Iterations',
|
| 322 |
+
rangemode: 'nonnegative'
|
| 323 |
+
},
|
| 324 |
+
yaxis: {
|
| 325 |
+
title: 'Accuracy (%)',
|
| 326 |
+
range: [0, 100]
|
| 327 |
+
}
|
| 328 |
+
};
|
| 329 |
+
|
| 330 |
+
// Create charts
|
| 331 |
+
Plotly.newPlot('lossChart', lossData, lossLayout);
|
| 332 |
+
Plotly.newPlot('accuracyChart', accuracyData, accuracyLayout);
|
| 333 |
+
});
|
| 334 |
+
|
| 335 |
+
function startComparison() {
|
| 336 |
+
// Disable start button and enable stop button
|
| 337 |
+
document.getElementById('startComparison').disabled = true;
|
| 338 |
+
document.getElementById('stopComparison').disabled = false;
|
| 339 |
+
|
| 340 |
+
// Get configuration for both models
|
| 341 |
+
const model1Config = {
|
| 342 |
+
block1: parseInt(document.getElementById('model1_block1').value),
|
| 343 |
+
block2: parseInt(document.getElementById('model1_block2').value),
|
| 344 |
+
block3: parseInt(document.getElementById('model1_block3').value),
|
| 345 |
+
optimizer: document.getElementById('model1_optimizer').value,
|
| 346 |
+
batch_size: parseInt(document.getElementById('model1_batch_size').value)
|
| 347 |
+
};
|
| 348 |
+
|
| 349 |
+
const model2Config = {
|
| 350 |
+
block1: parseInt(document.getElementById('model2_block1').value),
|
| 351 |
+
block2: parseInt(document.getElementById('model2_block2').value),
|
| 352 |
+
block3: parseInt(document.getElementById('model2_block3').value),
|
| 353 |
+
optimizer: document.getElementById('model2_optimizer').value,
|
| 354 |
+
batch_size: parseInt(document.getElementById('model2_batch_size').value)
|
| 355 |
+
};
|
| 356 |
+
|
| 357 |
+
// Setup WebSocket connection
|
| 358 |
+
ws = new WebSocket(`ws://${window.location.host}/ws/compare`);
|
| 359 |
+
|
| 360 |
+
ws.onmessage = function(event) {
|
| 361 |
+
const data = JSON.parse(event.data);
|
| 362 |
+
|
| 363 |
+
if (data.type === 'training_update') {
|
| 364 |
+
const modelIndex = data.data.model_id - 1; // 0 for model1, 1 for model2
|
| 365 |
+
|
| 366 |
+
// Update training metrics
|
| 367 |
+
Plotly.extendTraces('lossChart', {
|
| 368 |
+
x: [[data.data.step]],
|
| 369 |
+
y: [[data.data.train_loss]]
|
| 370 |
+
}, [modelIndex]);
|
| 371 |
+
|
| 372 |
+
Plotly.extendTraces('accuracyChart', {
|
| 373 |
+
x: [[data.data.step]],
|
| 374 |
+
y: [[data.data.train_acc]]
|
| 375 |
+
}, [modelIndex]);
|
| 376 |
+
}
|
| 377 |
+
else if (data.type === 'validation_update') {
|
| 378 |
+
const modelIndex = data.data.model_id - 1;
|
| 379 |
+
|
| 380 |
+
// Add validation points
|
| 381 |
+
Plotly.addTraces('lossChart', {
|
| 382 |
+
x: [data.data.step],
|
| 383 |
+
y: [data.data.val_loss],
|
| 384 |
+
name: `Model ${data.data.model_id} Validation Loss`,
|
| 385 |
+
mode: 'markers',
|
| 386 |
+
marker: { size: 8 }
|
| 387 |
+
});
|
| 388 |
+
|
| 389 |
+
Plotly.addTraces('accuracyChart', {
|
| 390 |
+
x: [data.data.step],
|
| 391 |
+
y: [data.data.val_acc],
|
| 392 |
+
name: `Model ${data.data.model_id} Validation Accuracy`,
|
| 393 |
+
mode: 'markers',
|
| 394 |
+
marker: { size: 8 }
|
| 395 |
+
});
|
| 396 |
+
}
|
| 397 |
+
else if (data.type === 'comparison_complete') {
|
| 398 |
+
document.getElementById('startComparison').disabled = false;
|
| 399 |
+
document.getElementById('stopComparison').disabled = true;
|
| 400 |
+
}
|
| 401 |
+
};
|
| 402 |
+
|
| 403 |
+
// Start comparison
|
| 404 |
+
ws.send(JSON.stringify({
|
| 405 |
+
type: 'start_comparison',
|
| 406 |
+
model1: model1Config,
|
| 407 |
+
model2: model2Config
|
| 408 |
+
}));
|
| 409 |
+
}
|
| 410 |
+
|
| 411 |
+
function stopComparison() {
|
| 412 |
+
if (ws) {
|
| 413 |
+
ws.close();
|
| 414 |
+
}
|
| 415 |
+
document.getElementById('startComparison').disabled = false;
|
| 416 |
+
document.getElementById('stopComparison').disabled = true;
|
| 417 |
+
}
|
| 418 |
+
</script>
|
| 419 |
+
</body>
|
| 420 |
+
</html>
|
templates/train_single.html
ADDED
|
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>Train Single Model - MNIST</title>
|
| 7 |
+
<link rel="stylesheet" href="{{ url_for('static', path='/css/style.css') }}">
|
| 8 |
+
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
|
| 9 |
+
</head>
|
| 10 |
+
<body>
|
| 11 |
+
<div class="container">
|
| 12 |
+
<h1>Train Single Model</h1>
|
| 13 |
+
|
| 14 |
+
<!-- Network Architecture Section -->
|
| 15 |
+
<div class="model-config">
|
| 16 |
+
<h3>Model Configuration</h3>
|
| 17 |
+
<div class="network-config">
|
| 18 |
+
<h4>Network Architecture</h4>
|
| 19 |
+
<div class="block-config">
|
| 20 |
+
<div class="block">
|
| 21 |
+
<label for="block1">Block-1:</label>
|
| 22 |
+
<select id="block1" name="block1" class="form-select">
|
| 23 |
+
<option value="8">8</option>
|
| 24 |
+
<option value="16">16</option>
|
| 25 |
+
<option value="32" selected>32</option>
|
| 26 |
+
<option value="64">64</option>
|
| 27 |
+
<option value="128">128</option>
|
| 28 |
+
</select>
|
| 29 |
+
</div>
|
| 30 |
+
|
| 31 |
+
<div class="block">
|
| 32 |
+
<label for="block2">Block-2:</label>
|
| 33 |
+
<select id="block2" name="block2" class="form-select">
|
| 34 |
+
<option value="8">8</option>
|
| 35 |
+
<option value="16">16</option>
|
| 36 |
+
<option value="32">32</option>
|
| 37 |
+
<option value="64" selected>64</option>
|
| 38 |
+
<option value="128">128</option>
|
| 39 |
+
</select>
|
| 40 |
+
</div>
|
| 41 |
+
|
| 42 |
+
<div class="block">
|
| 43 |
+
<label for="block3">Block-3:</label>
|
| 44 |
+
<select id="block3" name="block3" class="form-select">
|
| 45 |
+
<option value="8">8</option>
|
| 46 |
+
<option value="16">16</option>
|
| 47 |
+
<option value="32">32</option>
|
| 48 |
+
<option value="64">64</option>
|
| 49 |
+
<option value="128" selected>128</option>
|
| 50 |
+
</select>
|
| 51 |
+
</div>
|
| 52 |
+
</div>
|
| 53 |
+
</div>
|
| 54 |
+
<div class="training-config">
|
| 55 |
+
<div class="config-item">
|
| 56 |
+
<label for="optimizer">Optimizer:</label>
|
| 57 |
+
<select id="optimizer" name="optimizer">
|
| 58 |
+
<option value="SGD" selected>SGD</option>
|
| 59 |
+
<option value="Adam">Adam</option>
|
| 60 |
+
</select>
|
| 61 |
+
</div>
|
| 62 |
+
<div class="config-item">
|
| 63 |
+
<label for="batch_size">Batch Size:</label>
|
| 64 |
+
<select id="batch_size" name="batch_size">
|
| 65 |
+
<option value="32">32</option>
|
| 66 |
+
<option value="64" selected>64</option>
|
| 67 |
+
<option value="128">128</option>
|
| 68 |
+
</select>
|
| 69 |
+
</div>
|
| 70 |
+
</div>
|
| 71 |
+
</div>
|
| 72 |
+
|
| 73 |
+
<!-- Training Controls -->
|
| 74 |
+
<div class="controls">
|
| 75 |
+
<button id="startTraining" onclick="startTraining()">Start Training</button>
|
| 76 |
+
<button id="stopTraining" onclick="stopTraining()" disabled>Stop Training</button>
|
| 77 |
+
</div>
|
| 78 |
+
|
| 79 |
+
<!-- Training Progress -->
|
| 80 |
+
<div class="charts-container">
|
| 81 |
+
<div id="lossChart"></div>
|
| 82 |
+
<div id="accuracyChart"></div>
|
| 83 |
+
</div>
|
| 84 |
+
</div>
|
| 85 |
+
|
| 86 |
+
<script>
|
| 87 |
+
let ws;
|
| 88 |
+
let lossChart;
|
| 89 |
+
let accuracyChart;
|
| 90 |
+
|
| 91 |
+
// Initialize charts
|
| 92 |
+
document.addEventListener('DOMContentLoaded', function() {
|
| 93 |
+
// Loss chart configuration
|
| 94 |
+
const lossData = [
|
| 95 |
+
{
|
| 96 |
+
x: [],
|
| 97 |
+
y: [],
|
| 98 |
+
name: 'Training Loss',
|
| 99 |
+
type: 'scatter'
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
x: [],
|
| 103 |
+
y: [],
|
| 104 |
+
name: 'Validation Loss',
|
| 105 |
+
type: 'scatter'
|
| 106 |
+
}
|
| 107 |
+
];
|
| 108 |
+
|
| 109 |
+
const lossLayout = {
|
| 110 |
+
title: 'Loss',
|
| 111 |
+
xaxis: {
|
| 112 |
+
title: 'Iterations',
|
| 113 |
+
rangemode: 'nonnegative'
|
| 114 |
+
},
|
| 115 |
+
yaxis: {
|
| 116 |
+
title: 'Loss',
|
| 117 |
+
rangemode: 'nonnegative'
|
| 118 |
+
}
|
| 119 |
+
};
|
| 120 |
+
|
| 121 |
+
// Accuracy chart configuration
|
| 122 |
+
const accuracyData = [
|
| 123 |
+
{
|
| 124 |
+
x: [],
|
| 125 |
+
y: [],
|
| 126 |
+
name: 'Training Accuracy',
|
| 127 |
+
type: 'scatter'
|
| 128 |
+
},
|
| 129 |
+
{
|
| 130 |
+
x: [],
|
| 131 |
+
y: [],
|
| 132 |
+
name: 'Validation Accuracy',
|
| 133 |
+
type: 'scatter'
|
| 134 |
+
}
|
| 135 |
+
];
|
| 136 |
+
|
| 137 |
+
const accuracyLayout = {
|
| 138 |
+
title: 'Accuracy',
|
| 139 |
+
xaxis: {
|
| 140 |
+
title: 'Iterations',
|
| 141 |
+
rangemode: 'nonnegative'
|
| 142 |
+
},
|
| 143 |
+
yaxis: {
|
| 144 |
+
title: 'Accuracy (%)',
|
| 145 |
+
range: [0, 100]
|
| 146 |
+
}
|
| 147 |
+
};
|
| 148 |
+
|
| 149 |
+
// Create charts
|
| 150 |
+
Plotly.newPlot('lossChart', lossData, lossLayout);
|
| 151 |
+
Plotly.newPlot('accuracyChart', accuracyData, accuracyLayout);
|
| 152 |
+
});
|
| 153 |
+
|
| 154 |
+
function startTraining() {
|
| 155 |
+
// Disable start button and enable stop button
|
| 156 |
+
document.getElementById('startTraining').disabled = true;
|
| 157 |
+
document.getElementById('stopTraining').disabled = false;
|
| 158 |
+
|
| 159 |
+
// Clear previous charts
|
| 160 |
+
Plotly.purge('lossChart');
|
| 161 |
+
Plotly.purge('accuracyChart');
|
| 162 |
+
|
| 163 |
+
// Initialize new charts
|
| 164 |
+
const lossData = [
|
| 165 |
+
{
|
| 166 |
+
x: [],
|
| 167 |
+
y: [],
|
| 168 |
+
name: 'Training Loss',
|
| 169 |
+
type: 'scatter'
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
x: [],
|
| 173 |
+
y: [],
|
| 174 |
+
name: 'Validation Loss',
|
| 175 |
+
type: 'scatter'
|
| 176 |
+
}
|
| 177 |
+
];
|
| 178 |
+
|
| 179 |
+
const accuracyData = [
|
| 180 |
+
{
|
| 181 |
+
x: [],
|
| 182 |
+
y: [],
|
| 183 |
+
name: 'Training Accuracy',
|
| 184 |
+
type: 'scatter'
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
x: [],
|
| 188 |
+
y: [],
|
| 189 |
+
name: 'Validation Accuracy',
|
| 190 |
+
type: 'scatter'
|
| 191 |
+
}
|
| 192 |
+
];
|
| 193 |
+
|
| 194 |
+
Plotly.newPlot('lossChart', lossData, {
|
| 195 |
+
title: 'Loss',
|
| 196 |
+
xaxis: { title: 'Iterations', rangemode: 'nonnegative' },
|
| 197 |
+
yaxis: { title: 'Loss', rangemode: 'nonnegative' }
|
| 198 |
+
});
|
| 199 |
+
|
| 200 |
+
Plotly.newPlot('accuracyChart', accuracyData, {
|
| 201 |
+
title: 'Accuracy',
|
| 202 |
+
xaxis: { title: 'Iterations', rangemode: 'nonnegative' },
|
| 203 |
+
yaxis: { title: 'Accuracy (%)', range: [0, 100] }
|
| 204 |
+
});
|
| 205 |
+
|
| 206 |
+
// Setup WebSocket connection
|
| 207 |
+
ws = new WebSocket(`ws://${window.location.host}/ws/train`);
|
| 208 |
+
|
| 209 |
+
ws.onopen = function() {
|
| 210 |
+
console.log("WebSocket connection established");
|
| 211 |
+
// Send configuration through WebSocket
|
| 212 |
+
const config = {
|
| 213 |
+
block1: parseInt(document.getElementById('block1').value),
|
| 214 |
+
block2: parseInt(document.getElementById('block2').value),
|
| 215 |
+
block3: parseInt(document.getElementById('block3').value),
|
| 216 |
+
optimizer: document.getElementById('optimizer').value,
|
| 217 |
+
batch_size: parseInt(document.getElementById('batch_size').value),
|
| 218 |
+
epochs: 1 // Add default epochs value
|
| 219 |
+
};
|
| 220 |
+
ws.send(JSON.stringify(config));
|
| 221 |
+
};
|
| 222 |
+
|
| 223 |
+
ws.onerror = function(error) {
|
| 224 |
+
console.error("WebSocket error:", error);
|
| 225 |
+
stopTraining();
|
| 226 |
+
alert("Error connecting to training server");
|
| 227 |
+
};
|
| 228 |
+
|
| 229 |
+
ws.onclose = function() {
|
| 230 |
+
console.log("WebSocket connection closed");
|
| 231 |
+
stopTraining();
|
| 232 |
+
};
|
| 233 |
+
|
| 234 |
+
ws.onmessage = function(event) {
|
| 235 |
+
const data = JSON.parse(event.data);
|
| 236 |
+
|
| 237 |
+
if (data.type === 'training_update') {
|
| 238 |
+
// Update training metrics (trace index 0)
|
| 239 |
+
Plotly.extendTraces('lossChart', {
|
| 240 |
+
x: [[data.data.step]],
|
| 241 |
+
y: [[data.data.train_loss]]
|
| 242 |
+
}, [0]);
|
| 243 |
+
|
| 244 |
+
Plotly.extendTraces('accuracyChart', {
|
| 245 |
+
x: [[data.data.step]],
|
| 246 |
+
y: [[data.data.train_acc]]
|
| 247 |
+
}, [0]);
|
| 248 |
+
}
|
| 249 |
+
else if (data.type === 'validation_update') {
|
| 250 |
+
// Update validation metrics (trace index 1)
|
| 251 |
+
Plotly.extendTraces('lossChart', {
|
| 252 |
+
x: [[data.data.step]],
|
| 253 |
+
y: [[data.data.val_loss]]
|
| 254 |
+
}, [1]);
|
| 255 |
+
|
| 256 |
+
Plotly.extendTraces('accuracyChart', {
|
| 257 |
+
x: [[data.data.step]],
|
| 258 |
+
y: [[data.data.val_acc]]
|
| 259 |
+
}, [1]);
|
| 260 |
+
}
|
| 261 |
+
else if (data.type === 'training_complete') {
|
| 262 |
+
alert(data.data.message);
|
| 263 |
+
stopTraining();
|
| 264 |
+
}
|
| 265 |
+
else if (data.type === 'training_error') {
|
| 266 |
+
alert(data.data.message);
|
| 267 |
+
stopTraining();
|
| 268 |
+
}
|
| 269 |
+
};
|
| 270 |
+
}
|
| 271 |
+
|
| 272 |
+
function stopTraining() {
|
| 273 |
+
if (ws) {
|
| 274 |
+
ws.close();
|
| 275 |
+
}
|
| 276 |
+
document.getElementById('startTraining').disabled = false;
|
| 277 |
+
document.getElementById('stopTraining').disabled = true;
|
| 278 |
+
}
|
| 279 |
+
</script>
|
| 280 |
+
|
| 281 |
+
<style>
|
| 282 |
+
.container {
|
| 283 |
+
max-width: 1200px;
|
| 284 |
+
margin: 0 auto;
|
| 285 |
+
padding: 20px;
|
| 286 |
+
}
|
| 287 |
+
|
| 288 |
+
.model-config {
|
| 289 |
+
padding: 20px;
|
| 290 |
+
border: 1px solid #ddd;
|
| 291 |
+
border-radius: 5px;
|
| 292 |
+
margin-bottom: 20px;
|
| 293 |
+
}
|
| 294 |
+
|
| 295 |
+
.network-config {
|
| 296 |
+
margin-bottom: 20px;
|
| 297 |
+
}
|
| 298 |
+
|
| 299 |
+
.network-config h4 {
|
| 300 |
+
margin: 0 0 15px 0;
|
| 301 |
+
font-size: 1.1em;
|
| 302 |
+
}
|
| 303 |
+
|
| 304 |
+
.block-config {
|
| 305 |
+
display: flex;
|
| 306 |
+
justify-content: space-between;
|
| 307 |
+
gap: 20px;
|
| 308 |
+
}
|
| 309 |
+
|
| 310 |
+
.block {
|
| 311 |
+
flex: 1;
|
| 312 |
+
}
|
| 313 |
+
|
| 314 |
+
.block label {
|
| 315 |
+
display: block;
|
| 316 |
+
margin-bottom: 5px;
|
| 317 |
+
font-weight: bold;
|
| 318 |
+
}
|
| 319 |
+
|
| 320 |
+
.training-config {
|
| 321 |
+
display: flex;
|
| 322 |
+
gap: 20px;
|
| 323 |
+
}
|
| 324 |
+
|
| 325 |
+
.config-item {
|
| 326 |
+
flex: 1;
|
| 327 |
+
}
|
| 328 |
+
|
| 329 |
+
.config-item label {
|
| 330 |
+
display: block;
|
| 331 |
+
margin-bottom: 5px;
|
| 332 |
+
font-weight: bold;
|
| 333 |
+
}
|
| 334 |
+
|
| 335 |
+
select {
|
| 336 |
+
width: 100%;
|
| 337 |
+
padding: 8px;
|
| 338 |
+
border: 1px solid #ddd;
|
| 339 |
+
border-radius: 4px;
|
| 340 |
+
}
|
| 341 |
+
|
| 342 |
+
.controls {
|
| 343 |
+
margin: 20px 0;
|
| 344 |
+
}
|
| 345 |
+
|
| 346 |
+
button {
|
| 347 |
+
padding: 10px 20px;
|
| 348 |
+
margin-right: 10px;
|
| 349 |
+
border: none;
|
| 350 |
+
border-radius: 4px;
|
| 351 |
+
background-color: #007bff;
|
| 352 |
+
color: white;
|
| 353 |
+
cursor: pointer;
|
| 354 |
+
}
|
| 355 |
+
|
| 356 |
+
button:disabled {
|
| 357 |
+
background-color: #ccc;
|
| 358 |
+
cursor: not-allowed;
|
| 359 |
+
}
|
| 360 |
+
|
| 361 |
+
.charts-container {
|
| 362 |
+
display: flex;
|
| 363 |
+
flex-direction: column;
|
| 364 |
+
gap: 20px;
|
| 365 |
+
margin-top: 20px;
|
| 366 |
+
}
|
| 367 |
+
|
| 368 |
+
#lossChart, #accuracyChart {
|
| 369 |
+
height: 400px;
|
| 370 |
+
width: 100%;
|
| 371 |
+
}
|
| 372 |
+
</style>
|
| 373 |
+
</body>
|
| 374 |
+
</html>
|