Spaces:
Sleeping
Sleeping
Feat: Craete frontend and backend for the project
Browse files- static/css/style.css +278 -0
- static/js/inference.js +99 -0
- static/js/train.js +229 -0
- static/js/train_compare.js +105 -0
- static/js/train_single.js +121 -0
- templates/index.html +41 -0
- templates/inference.html +41 -0
- templates/train.html +19 -0
- templates/train_compare.html +420 -0
- templates/train_single.html +374 -0
static/css/style.css
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
:root {
|
2 |
+
--primary-color: #6366f1;
|
3 |
+
--background-dark: #0f172a;
|
4 |
+
--text-light: #e2e8f0;
|
5 |
+
--text-gray: #94a3b8;
|
6 |
+
--card-bg: #1e293b;
|
7 |
+
--gradient-start: #818cf8;
|
8 |
+
--gradient-end: #6366f1;
|
9 |
+
--gradient-hover-start: #6366f1;
|
10 |
+
--gradient-hover-end: #4f46e5;
|
11 |
+
}
|
12 |
+
|
13 |
+
body {
|
14 |
+
font-family: 'Inter', sans-serif;
|
15 |
+
margin: 0;
|
16 |
+
padding: 0;
|
17 |
+
background-color: var(--background-dark);
|
18 |
+
color: var(--text-light);
|
19 |
+
}
|
20 |
+
|
21 |
+
.container {
|
22 |
+
max-width: 1200px;
|
23 |
+
margin: 0 auto;
|
24 |
+
padding: 2rem;
|
25 |
+
}
|
26 |
+
|
27 |
+
h1 {
|
28 |
+
font-size: 3rem;
|
29 |
+
font-weight: 700;
|
30 |
+
text-align: center;
|
31 |
+
margin-bottom: 2rem;
|
32 |
+
background: linear-gradient(to right, #818cf8, #6366f1);
|
33 |
+
-webkit-background-clip: text;
|
34 |
+
-webkit-text-fill-color: transparent;
|
35 |
+
}
|
36 |
+
|
37 |
+
.button-container {
|
38 |
+
display: flex;
|
39 |
+
gap: 1rem;
|
40 |
+
justify-content: center;
|
41 |
+
margin: 2rem 0;
|
42 |
+
}
|
43 |
+
|
44 |
+
.btn {
|
45 |
+
padding: 0.75rem 1.5rem;
|
46 |
+
background: linear-gradient(135deg, var(--gradient-start), var(--gradient-end));
|
47 |
+
color: white;
|
48 |
+
border: none;
|
49 |
+
border-radius: 0.5rem;
|
50 |
+
cursor: pointer;
|
51 |
+
text-decoration: none;
|
52 |
+
font-size: 1rem;
|
53 |
+
font-weight: 500;
|
54 |
+
transition: all 0.3s ease;
|
55 |
+
position: relative;
|
56 |
+
z-index: 1;
|
57 |
+
overflow: hidden;
|
58 |
+
}
|
59 |
+
|
60 |
+
.btn::before {
|
61 |
+
content: '';
|
62 |
+
position: absolute;
|
63 |
+
top: 0;
|
64 |
+
left: 0;
|
65 |
+
right: 0;
|
66 |
+
bottom: 0;
|
67 |
+
background: linear-gradient(135deg, var(--gradient-hover-start), var(--gradient-hover-end));
|
68 |
+
opacity: 0;
|
69 |
+
transition: opacity 0.3s ease;
|
70 |
+
z-index: -1;
|
71 |
+
}
|
72 |
+
|
73 |
+
.btn:hover::before {
|
74 |
+
opacity: 1;
|
75 |
+
}
|
76 |
+
|
77 |
+
.btn:hover {
|
78 |
+
transform: translateY(-2px);
|
79 |
+
box-shadow: 0 4px 15px rgba(99, 102, 241, 0.5);
|
80 |
+
}
|
81 |
+
|
82 |
+
.card {
|
83 |
+
background-color: var(--card-bg);
|
84 |
+
border-radius: 1rem;
|
85 |
+
padding: 2rem;
|
86 |
+
margin: 1rem 0;
|
87 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
88 |
+
position: relative;
|
89 |
+
}
|
90 |
+
|
91 |
+
.card::before {
|
92 |
+
content: '';
|
93 |
+
position: absolute;
|
94 |
+
top: -1px;
|
95 |
+
left: -1px;
|
96 |
+
right: -1px;
|
97 |
+
bottom: -1px;
|
98 |
+
background: linear-gradient(135deg, var(--gradient-start), var(--gradient-end));
|
99 |
+
border-radius: 1rem;
|
100 |
+
z-index: -1;
|
101 |
+
opacity: 0.1;
|
102 |
+
transition: opacity 0.3s ease;
|
103 |
+
}
|
104 |
+
|
105 |
+
.card:hover::before {
|
106 |
+
opacity: 0.2;
|
107 |
+
}
|
108 |
+
|
109 |
+
.form-group {
|
110 |
+
margin-bottom: 1.5rem;
|
111 |
+
}
|
112 |
+
|
113 |
+
.form-group label {
|
114 |
+
display: block;
|
115 |
+
margin-bottom: 0.5rem;
|
116 |
+
color: var(--text-gray);
|
117 |
+
}
|
118 |
+
|
119 |
+
input[type="number"],
|
120 |
+
select {
|
121 |
+
width: 100%;
|
122 |
+
padding: 0.75rem;
|
123 |
+
border: 1px solid;
|
124 |
+
border-image: linear-gradient(135deg, var(--gradient-start), var(--gradient-end)) 1;
|
125 |
+
border-radius: 0.5rem;
|
126 |
+
background-color: #374151;
|
127 |
+
color: var(--text-light);
|
128 |
+
margin-bottom: 0.5rem;
|
129 |
+
transition: all 0.3s ease;
|
130 |
+
}
|
131 |
+
|
132 |
+
input[type="number"]:focus,
|
133 |
+
select:focus {
|
134 |
+
outline: none;
|
135 |
+
box-shadow: 0 0 0 2px rgba(99, 102, 241, 0.3);
|
136 |
+
}
|
137 |
+
|
138 |
+
#drawing-canvas {
|
139 |
+
background-color: white;
|
140 |
+
border-radius: 1rem;
|
141 |
+
margin: 2rem auto;
|
142 |
+
display: block;
|
143 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
144 |
+
}
|
145 |
+
|
146 |
+
.training-form {
|
147 |
+
background-color: var(--card-bg);
|
148 |
+
border-radius: 1rem;
|
149 |
+
padding: 2rem;
|
150 |
+
margin-top: 2rem;
|
151 |
+
}
|
152 |
+
|
153 |
+
.results {
|
154 |
+
background-color: var(--card-bg);
|
155 |
+
border-radius: 1rem;
|
156 |
+
padding: 2rem;
|
157 |
+
margin-top: 2rem;
|
158 |
+
}
|
159 |
+
|
160 |
+
#training-logs {
|
161 |
+
font-family: 'Roboto Mono', monospace;
|
162 |
+
color: var(--text-gray);
|
163 |
+
padding: 1rem;
|
164 |
+
border-radius: 0.5rem;
|
165 |
+
background-color: #374151;
|
166 |
+
margin-top: 1rem;
|
167 |
+
border: 1px solid;
|
168 |
+
border-image: linear-gradient(135deg, var(--gradient-start), var(--gradient-end)) 1;
|
169 |
+
}
|
170 |
+
|
171 |
+
.plot-container {
|
172 |
+
background-color: var(--card-bg);
|
173 |
+
border-radius: 1rem;
|
174 |
+
padding: 1rem;
|
175 |
+
margin: 1rem 0;
|
176 |
+
border: 1px solid;
|
177 |
+
border-image: linear-gradient(135deg, var(--gradient-start), var(--gradient-end)) 1;
|
178 |
+
}
|
179 |
+
|
180 |
+
h2, h3 {
|
181 |
+
background: linear-gradient(to right, var(--gradient-start), var(--gradient-end));
|
182 |
+
-webkit-background-clip: text;
|
183 |
+
-webkit-text-fill-color: transparent;
|
184 |
+
margin-bottom: 1.5rem;
|
185 |
+
}
|
186 |
+
|
187 |
+
.features-grid {
|
188 |
+
display: grid;
|
189 |
+
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
|
190 |
+
gap: 1.5rem;
|
191 |
+
margin-top: 2rem;
|
192 |
+
}
|
193 |
+
|
194 |
+
.hero-text {
|
195 |
+
font-size: 1.25rem;
|
196 |
+
text-align: center;
|
197 |
+
color: var(--text-light);
|
198 |
+
line-height: 1.6;
|
199 |
+
}
|
200 |
+
|
201 |
+
@media (max-width: 768px) {
|
202 |
+
.container {
|
203 |
+
padding: 1rem;
|
204 |
+
}
|
205 |
+
|
206 |
+
h1 {
|
207 |
+
font-size: 2.5rem;
|
208 |
+
}
|
209 |
+
|
210 |
+
.features-grid {
|
211 |
+
grid-template-columns: 1fr;
|
212 |
+
}
|
213 |
+
}
|
214 |
+
|
215 |
+
.models-grid {
|
216 |
+
display: grid;
|
217 |
+
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
|
218 |
+
gap: 2rem;
|
219 |
+
margin-bottom: 2rem;
|
220 |
+
}
|
221 |
+
|
222 |
+
.model-config {
|
223 |
+
background: var(--card-bg);
|
224 |
+
padding: 1.5rem;
|
225 |
+
border-radius: 1rem;
|
226 |
+
position: relative;
|
227 |
+
}
|
228 |
+
|
229 |
+
.model-config::before {
|
230 |
+
content: '';
|
231 |
+
position: absolute;
|
232 |
+
top: -1px;
|
233 |
+
left: -1px;
|
234 |
+
right: -1px;
|
235 |
+
bottom: -1px;
|
236 |
+
background: linear-gradient(135deg, var(--gradient-start), var(--gradient-end));
|
237 |
+
border-radius: 1rem;
|
238 |
+
z-index: -1;
|
239 |
+
opacity: 0.1;
|
240 |
+
transition: opacity 0.3s ease;
|
241 |
+
}
|
242 |
+
|
243 |
+
.model-config:hover::before {
|
244 |
+
opacity: 0.2;
|
245 |
+
}
|
246 |
+
|
247 |
+
.kernel-inputs {
|
248 |
+
display: grid;
|
249 |
+
grid-template-columns: repeat(2, 1fr);
|
250 |
+
gap: 0.5rem;
|
251 |
+
}
|
252 |
+
|
253 |
+
#comparison-logs {
|
254 |
+
display: grid;
|
255 |
+
grid-template-columns: repeat(2, 1fr);
|
256 |
+
gap: 1rem;
|
257 |
+
}
|
258 |
+
|
259 |
+
.comparison-model {
|
260 |
+
padding: 1rem;
|
261 |
+
background: #374151;
|
262 |
+
border-radius: 0.5rem;
|
263 |
+
}
|
264 |
+
|
265 |
+
.comparison-model h4 {
|
266 |
+
margin-top: 0;
|
267 |
+
color: var(--text-light);
|
268 |
+
}
|
269 |
+
|
270 |
+
@media (max-width: 768px) {
|
271 |
+
.models-grid {
|
272 |
+
grid-template-columns: 1fr;
|
273 |
+
}
|
274 |
+
|
275 |
+
#comparison-logs {
|
276 |
+
grid-template-columns: 1fr;
|
277 |
+
}
|
278 |
+
}
|
static/js/inference.js
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
let canvas, ctx;
|
2 |
+
|
3 |
+
window.onload = function() {
|
4 |
+
canvas = document.getElementById('drawing-canvas');
|
5 |
+
ctx = canvas.getContext('2d');
|
6 |
+
|
7 |
+
setupCanvas();
|
8 |
+
};
|
9 |
+
|
10 |
+
function setupCanvas() {
|
11 |
+
ctx.fillStyle = "white";
|
12 |
+
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
13 |
+
|
14 |
+
let drawing = false;
|
15 |
+
|
16 |
+
canvas.addEventListener('mousedown', startDrawing);
|
17 |
+
canvas.addEventListener('mousemove', draw);
|
18 |
+
canvas.addEventListener('mouseup', stopDrawing);
|
19 |
+
canvas.addEventListener('mouseout', stopDrawing);
|
20 |
+
|
21 |
+
function startDrawing(e) {
|
22 |
+
drawing = true;
|
23 |
+
draw(e);
|
24 |
+
}
|
25 |
+
|
26 |
+
function draw(e) {
|
27 |
+
if (!drawing) return;
|
28 |
+
|
29 |
+
const rect = canvas.getBoundingClientRect();
|
30 |
+
const x = e.clientX - rect.left;
|
31 |
+
const y = e.clientY - rect.top;
|
32 |
+
|
33 |
+
ctx.lineWidth = 15;
|
34 |
+
ctx.lineCap = 'round';
|
35 |
+
ctx.strokeStyle = 'black';
|
36 |
+
ctx.lineTo(x, y);
|
37 |
+
ctx.stroke();
|
38 |
+
ctx.beginPath();
|
39 |
+
ctx.moveTo(x, y);
|
40 |
+
}
|
41 |
+
|
42 |
+
function stopDrawing() {
|
43 |
+
drawing = false;
|
44 |
+
ctx.beginPath();
|
45 |
+
}
|
46 |
+
}
|
47 |
+
|
48 |
+
function clearCanvas() {
|
49 |
+
ctx.fillStyle = "white";
|
50 |
+
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
51 |
+
}
|
52 |
+
|
53 |
+
async function predict() {
|
54 |
+
const modelSelect = document.getElementById('model-select');
|
55 |
+
const selectedModel = modelSelect.value;
|
56 |
+
|
57 |
+
if (!selectedModel) {
|
58 |
+
alert('Please train a model first');
|
59 |
+
return;
|
60 |
+
}
|
61 |
+
|
62 |
+
const imageData = canvas.toDataURL('image/png');
|
63 |
+
|
64 |
+
try {
|
65 |
+
const response = await fetch('/api/inference', {
|
66 |
+
method: 'POST',
|
67 |
+
headers: {
|
68 |
+
'Content-Type': 'application/json',
|
69 |
+
},
|
70 |
+
body: JSON.stringify({
|
71 |
+
image: imageData,
|
72 |
+
model_name: selectedModel
|
73 |
+
})
|
74 |
+
});
|
75 |
+
|
76 |
+
if (!response.ok) {
|
77 |
+
const error = await response.json();
|
78 |
+
throw new Error(error.detail || 'Prediction failed');
|
79 |
+
}
|
80 |
+
|
81 |
+
const data = await response.json();
|
82 |
+
displayPrediction(data.prediction);
|
83 |
+
} catch (error) {
|
84 |
+
console.error('Error:', error);
|
85 |
+
alert(error.message || 'Error during prediction');
|
86 |
+
}
|
87 |
+
}
|
88 |
+
|
89 |
+
function displayPrediction(prediction) {
|
90 |
+
const resultDiv = document.getElementById('prediction-result');
|
91 |
+
resultDiv.classList.remove('hidden');
|
92 |
+
resultDiv.innerHTML = `
|
93 |
+
<h2>Prediction Result</h2>
|
94 |
+
<p class="prediction-text">Predicted Digit: ${prediction}</p>
|
95 |
+
<div class="confidence-bar">
|
96 |
+
<div class="confidence-level" style="width: 100%"></div>
|
97 |
+
</div>
|
98 |
+
`;
|
99 |
+
}
|
static/js/train.js
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
let ws;
|
2 |
+
let lossChart;
|
3 |
+
let accuracyChart;
|
4 |
+
|
5 |
+
function showTrainingForm(type) {
|
6 |
+
const singleForm = document.getElementById('single-model-form');
|
7 |
+
const compareForm = document.getElementById('compare-models-form');
|
8 |
+
|
9 |
+
if (type === 'single') {
|
10 |
+
singleForm.classList.remove('hidden');
|
11 |
+
compareForm.classList.add('hidden');
|
12 |
+
} else {
|
13 |
+
singleForm.classList.add('hidden');
|
14 |
+
compareForm.classList.remove('hidden');
|
15 |
+
}
|
16 |
+
}
|
17 |
+
|
18 |
+
function initializeCharts() {
|
19 |
+
const lossData = [{
|
20 |
+
name: 'Training Loss',
|
21 |
+
x: [],
|
22 |
+
y: [],
|
23 |
+
type: 'scatter'
|
24 |
+
}, {
|
25 |
+
name: 'Validation Loss',
|
26 |
+
x: [],
|
27 |
+
y: [],
|
28 |
+
type: 'scatter'
|
29 |
+
}];
|
30 |
+
|
31 |
+
const accuracyData = [{
|
32 |
+
name: 'Training Accuracy',
|
33 |
+
x: [],
|
34 |
+
y: [],
|
35 |
+
type: 'scatter'
|
36 |
+
}, {
|
37 |
+
name: 'Validation Accuracy',
|
38 |
+
x: [],
|
39 |
+
y: [],
|
40 |
+
type: 'scatter'
|
41 |
+
}];
|
42 |
+
|
43 |
+
Plotly.newPlot('loss-plot', lossData, {
|
44 |
+
title: 'Training and Validation Loss',
|
45 |
+
xaxis: { title: 'Iterations' },
|
46 |
+
yaxis: { title: 'Loss' }
|
47 |
+
});
|
48 |
+
|
49 |
+
Plotly.newPlot('accuracy-plot', accuracyData, {
|
50 |
+
title: 'Training and Validation Accuracy',
|
51 |
+
xaxis: { title: 'Iterations' },
|
52 |
+
yaxis: { title: 'Accuracy (%)' }
|
53 |
+
});
|
54 |
+
}
|
55 |
+
|
56 |
+
function updateCharts(data) {
|
57 |
+
const iteration = data.epoch * data.batch;
|
58 |
+
|
59 |
+
Plotly.extendTraces('loss-plot', {
|
60 |
+
x: [[iteration], [iteration]],
|
61 |
+
y: [[data.train_loss], [data.val_loss]]
|
62 |
+
}, [0, 1]);
|
63 |
+
|
64 |
+
Plotly.extendTraces('accuracy-plot', {
|
65 |
+
x: [[iteration], [iteration]],
|
66 |
+
y: [[data.train_acc], [data.val_acc]]
|
67 |
+
}, [0, 1]);
|
68 |
+
|
69 |
+
// Update training logs
|
70 |
+
const logsDiv = document.getElementById('training-logs');
|
71 |
+
logsDiv.innerHTML = `
|
72 |
+
<p>Epoch: ${data.epoch + 1}</p>
|
73 |
+
<p>Training Loss: ${data.train_loss.toFixed(4)}</p>
|
74 |
+
<p>Training Accuracy: ${data.train_acc.toFixed(2)}%</p>
|
75 |
+
<p>Validation Loss: ${data.val_loss.toFixed(4)}</p>
|
76 |
+
<p>Validation Accuracy: ${data.val_acc.toFixed(2)}%</p>
|
77 |
+
`;
|
78 |
+
}
|
79 |
+
|
80 |
+
async function trainSingleModel() {
|
81 |
+
const config = {
|
82 |
+
kernels: [
|
83 |
+
parseInt(document.getElementById('kernel1').value),
|
84 |
+
parseInt(document.getElementById('kernel2').value),
|
85 |
+
parseInt(document.getElementById('kernel3').value)
|
86 |
+
],
|
87 |
+
optimizer: document.getElementById('optimizer').value,
|
88 |
+
batch_size: parseInt(document.getElementById('batch_size').value),
|
89 |
+
epochs: parseInt(document.getElementById('epochs').value)
|
90 |
+
};
|
91 |
+
|
92 |
+
// Show progress section and initialize charts
|
93 |
+
document.getElementById('training-progress').classList.remove('hidden');
|
94 |
+
initializeCharts();
|
95 |
+
|
96 |
+
// Connect to WebSocket
|
97 |
+
ws = new WebSocket(`ws://${window.location.host}/ws/train`);
|
98 |
+
ws.onmessage = function(event) {
|
99 |
+
const data = JSON.parse(event.data);
|
100 |
+
updateCharts(data);
|
101 |
+
};
|
102 |
+
|
103 |
+
try {
|
104 |
+
const response = await fetch('/api/train_single', {
|
105 |
+
method: 'POST',
|
106 |
+
headers: {
|
107 |
+
'Content-Type': 'application/json',
|
108 |
+
},
|
109 |
+
body: JSON.stringify(config)
|
110 |
+
});
|
111 |
+
const data = await response.json();
|
112 |
+
|
113 |
+
if (data.status === 'success') {
|
114 |
+
alert('Training completed successfully!');
|
115 |
+
}
|
116 |
+
} catch (error) {
|
117 |
+
console.error('Error:', error);
|
118 |
+
alert('Error during training. Please check console for details.');
|
119 |
+
}
|
120 |
+
}
|
121 |
+
|
122 |
+
async function compareModels() {
|
123 |
+
const config = {
|
124 |
+
model1: {
|
125 |
+
kernels: [
|
126 |
+
parseInt(document.getElementById('model1_kernel1').value),
|
127 |
+
parseInt(document.getElementById('model1_kernel2').value),
|
128 |
+
parseInt(document.getElementById('model1_kernel3').value)
|
129 |
+
],
|
130 |
+
optimizer: document.getElementById('model1_optimizer').value,
|
131 |
+
batch_size: parseInt(document.getElementById('model1_batch_size').value),
|
132 |
+
epochs: parseInt(document.getElementById('model1_epochs').value)
|
133 |
+
},
|
134 |
+
model2: {
|
135 |
+
kernels: [
|
136 |
+
parseInt(document.getElementById('model2_kernel1').value),
|
137 |
+
parseInt(document.getElementById('model2_kernel2').value),
|
138 |
+
parseInt(document.getElementById('model2_kernel3').value)
|
139 |
+
],
|
140 |
+
optimizer: document.getElementById('model2_optimizer').value,
|
141 |
+
batch_size: parseInt(document.getElementById('model2_batch_size').value),
|
142 |
+
epochs: parseInt(document.getElementById('model2_epochs').value)
|
143 |
+
}
|
144 |
+
};
|
145 |
+
|
146 |
+
// Show comparison progress section
|
147 |
+
document.getElementById('comparison-progress').classList.remove('hidden');
|
148 |
+
initializeComparisonCharts();
|
149 |
+
|
150 |
+
try {
|
151 |
+
const response = await fetch('/api/train_compare', {
|
152 |
+
method: 'POST',
|
153 |
+
headers: {
|
154 |
+
'Content-Type': 'application/json',
|
155 |
+
},
|
156 |
+
body: JSON.stringify(config)
|
157 |
+
});
|
158 |
+
const data = await response.json();
|
159 |
+
|
160 |
+
if (data.status === 'success') {
|
161 |
+
displayComparisonResults(data);
|
162 |
+
alert('Model comparison completed successfully!');
|
163 |
+
}
|
164 |
+
} catch (error) {
|
165 |
+
console.error('Error:', error);
|
166 |
+
alert('Error during model comparison. Please check console for details.');
|
167 |
+
}
|
168 |
+
}
|
169 |
+
|
170 |
+
function initializeComparisonCharts() {
|
171 |
+
const lossData = [{
|
172 |
+
name: 'Model 1 Loss',
|
173 |
+
x: [],
|
174 |
+
y: [],
|
175 |
+
type: 'scatter'
|
176 |
+
}, {
|
177 |
+
name: 'Model 2 Loss',
|
178 |
+
x: [],
|
179 |
+
y: [],
|
180 |
+
type: 'scatter'
|
181 |
+
}];
|
182 |
+
|
183 |
+
const accuracyData = [{
|
184 |
+
name: 'Model 1 Accuracy',
|
185 |
+
x: [],
|
186 |
+
y: [],
|
187 |
+
type: 'scatter'
|
188 |
+
}, {
|
189 |
+
name: 'Model 2 Accuracy',
|
190 |
+
x: [],
|
191 |
+
y: [],
|
192 |
+
type: 'scatter'
|
193 |
+
}];
|
194 |
+
|
195 |
+
Plotly.newPlot('comparison-loss-plot', lossData, {
|
196 |
+
title: 'Loss Comparison',
|
197 |
+
xaxis: { title: 'Iterations' },
|
198 |
+
yaxis: { title: 'Loss' }
|
199 |
+
});
|
200 |
+
|
201 |
+
Plotly.newPlot('comparison-accuracy-plot', accuracyData, {
|
202 |
+
title: 'Accuracy Comparison',
|
203 |
+
xaxis: { title: 'Iterations' },
|
204 |
+
yaxis: { title: 'Accuracy (%)' }
|
205 |
+
});
|
206 |
+
}
|
207 |
+
|
208 |
+
function displayComparisonResults(data) {
|
209 |
+
const logsDiv = document.getElementById('comparison-logs');
|
210 |
+
logsDiv.innerHTML = `
|
211 |
+
<div class="comparison-model">
|
212 |
+
<h4>Model 1</h4>
|
213 |
+
<p>Final Loss: ${data.model1_results.history.train_loss.slice(-1)[0].toFixed(4)}</p>
|
214 |
+
<p>Final Accuracy: ${data.model1_results.history.train_acc.slice(-1)[0].toFixed(2)}%</p>
|
215 |
+
<p>Model Name: ${data.model1_results.model_name}</p>
|
216 |
+
</div>
|
217 |
+
<div class="comparison-model">
|
218 |
+
<h4>Model 2</h4>
|
219 |
+
<p>Final Loss: ${data.model2_results.history.train_loss.slice(-1)[0].toFixed(4)}</p>
|
220 |
+
<p>Final Accuracy: ${data.model2_results.history.train_acc.slice(-1)[0].toFixed(2)}%</p>
|
221 |
+
<p>Model Name: ${data.model2_results.model_name}</p>
|
222 |
+
</div>
|
223 |
+
`;
|
224 |
+
}
|
225 |
+
|
226 |
+
function displayResults(data) {
|
227 |
+
const resultsDiv = document.getElementById('training-results');
|
228 |
+
// Display training results
|
229 |
+
}
|
static/js/train_compare.js
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
let ws;
|
2 |
+
|
3 |
+
function initializeComparisonCharts() {
|
4 |
+
const lossData = [{
|
5 |
+
name: 'Model 1 Loss',
|
6 |
+
x: [],
|
7 |
+
y: [],
|
8 |
+
type: 'scatter'
|
9 |
+
}, {
|
10 |
+
name: 'Model 2 Loss',
|
11 |
+
x: [],
|
12 |
+
y: [],
|
13 |
+
type: 'scatter'
|
14 |
+
}];
|
15 |
+
|
16 |
+
const accuracyData = [{
|
17 |
+
name: 'Model 1 Accuracy',
|
18 |
+
x: [],
|
19 |
+
y: [],
|
20 |
+
type: 'scatter'
|
21 |
+
}, {
|
22 |
+
name: 'Model 2 Accuracy',
|
23 |
+
x: [],
|
24 |
+
y: [],
|
25 |
+
type: 'scatter'
|
26 |
+
}];
|
27 |
+
|
28 |
+
Plotly.newPlot('comparison-loss-plot', lossData, {
|
29 |
+
title: 'Loss Comparison',
|
30 |
+
xaxis: { title: 'Iterations' },
|
31 |
+
yaxis: { title: 'Loss' }
|
32 |
+
});
|
33 |
+
|
34 |
+
Plotly.newPlot('comparison-accuracy-plot', accuracyData, {
|
35 |
+
title: 'Accuracy Comparison',
|
36 |
+
xaxis: { title: 'Iterations' },
|
37 |
+
yaxis: { title: 'Accuracy (%)' }
|
38 |
+
});
|
39 |
+
}
|
40 |
+
|
41 |
+
async function compareModels() {
|
42 |
+
const config = {
|
43 |
+
model1: {
|
44 |
+
kernels: [
|
45 |
+
parseInt(document.getElementById('model1_kernel1').value),
|
46 |
+
parseInt(document.getElementById('model1_kernel2').value),
|
47 |
+
parseInt(document.getElementById('model1_kernel3').value)
|
48 |
+
],
|
49 |
+
optimizer: document.getElementById('model1_optimizer').value,
|
50 |
+
batch_size: parseInt(document.getElementById('model1_batch_size').value),
|
51 |
+
epochs: parseInt(document.getElementById('model1_epochs').value)
|
52 |
+
},
|
53 |
+
model2: {
|
54 |
+
kernels: [
|
55 |
+
parseInt(document.getElementById('model2_kernel1').value),
|
56 |
+
parseInt(document.getElementById('model2_kernel2').value),
|
57 |
+
parseInt(document.getElementById('model2_kernel3').value)
|
58 |
+
],
|
59 |
+
optimizer: document.getElementById('model2_optimizer').value,
|
60 |
+
batch_size: parseInt(document.getElementById('model2_batch_size').value),
|
61 |
+
epochs: parseInt(document.getElementById('model2_epochs').value)
|
62 |
+
}
|
63 |
+
};
|
64 |
+
|
65 |
+
// Show comparison progress section
|
66 |
+
document.getElementById('comparison-progress').classList.remove('hidden');
|
67 |
+
initializeComparisonCharts();
|
68 |
+
|
69 |
+
try {
|
70 |
+
const response = await fetch('/api/train_compare', {
|
71 |
+
method: 'POST',
|
72 |
+
headers: {
|
73 |
+
'Content-Type': 'application/json',
|
74 |
+
},
|
75 |
+
body: JSON.stringify(config)
|
76 |
+
});
|
77 |
+
const data = await response.json();
|
78 |
+
|
79 |
+
if (data.status === 'success') {
|
80 |
+
displayComparisonResults(data);
|
81 |
+
alert('Model comparison completed successfully!');
|
82 |
+
}
|
83 |
+
} catch (error) {
|
84 |
+
console.error('Error:', error);
|
85 |
+
alert('Error during model comparison. Please check console for details.');
|
86 |
+
}
|
87 |
+
}
|
88 |
+
|
89 |
+
function displayComparisonResults(data) {
|
90 |
+
const logsDiv = document.getElementById('comparison-logs');
|
91 |
+
logsDiv.innerHTML = `
|
92 |
+
<div class="comparison-model">
|
93 |
+
<h4>Model 1</h4>
|
94 |
+
<p>Final Loss: ${data.model1_results.history.train_loss.slice(-1)[0].toFixed(4)}</p>
|
95 |
+
<p>Final Accuracy: ${data.model1_results.history.train_acc.slice(-1)[0].toFixed(2)}%</p>
|
96 |
+
<p>Model Name: ${data.model1_results.model_name}</p>
|
97 |
+
</div>
|
98 |
+
<div class="comparison-model">
|
99 |
+
<h4>Model 2</h4>
|
100 |
+
<p>Final Loss: ${data.model2_results.history.train_loss.slice(-1)[0].toFixed(4)}</p>
|
101 |
+
<p>Final Accuracy: ${data.model2_results.history.train_acc.slice(-1)[0].toFixed(2)}%</p>
|
102 |
+
<p>Model Name: ${data.model2_results.model_name}</p>
|
103 |
+
</div>
|
104 |
+
`;
|
105 |
+
}
|
static/js/train_single.js
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
let ws;
|
2 |
+
|
3 |
+
function initializeCharts() {
|
4 |
+
const lossData = [{
|
5 |
+
name: 'Training Loss',
|
6 |
+
x: [],
|
7 |
+
y: [],
|
8 |
+
type: 'scatter'
|
9 |
+
}, {
|
10 |
+
name: 'Validation Loss',
|
11 |
+
x: [],
|
12 |
+
y: [],
|
13 |
+
type: 'scatter'
|
14 |
+
}];
|
15 |
+
|
16 |
+
const accuracyData = [{
|
17 |
+
name: 'Training Accuracy',
|
18 |
+
x: [],
|
19 |
+
y: [],
|
20 |
+
type: 'scatter'
|
21 |
+
}, {
|
22 |
+
name: 'Validation Accuracy',
|
23 |
+
x: [],
|
24 |
+
y: [],
|
25 |
+
type: 'scatter'
|
26 |
+
}];
|
27 |
+
|
28 |
+
Plotly.newPlot('loss-plot', lossData, {
|
29 |
+
title: 'Training and Validation Loss',
|
30 |
+
xaxis: { title: 'Iterations' },
|
31 |
+
yaxis: { title: 'Loss' }
|
32 |
+
});
|
33 |
+
|
34 |
+
Plotly.newPlot('accuracy-plot', accuracyData, {
|
35 |
+
title: 'Training and Validation Accuracy',
|
36 |
+
xaxis: { title: 'Iterations' },
|
37 |
+
yaxis: { title: 'Accuracy (%)' }
|
38 |
+
});
|
39 |
+
}
|
40 |
+
|
41 |
+
function updateCharts(data) {
|
42 |
+
const iteration = data.epoch * data.batch;
|
43 |
+
|
44 |
+
Plotly.extendTraces('loss-plot', {
|
45 |
+
x: [[iteration], [iteration]],
|
46 |
+
y: [[data.train_loss], [data.val_loss]]
|
47 |
+
}, [0, 1]);
|
48 |
+
|
49 |
+
Plotly.extendTraces('accuracy-plot', {
|
50 |
+
x: [[iteration], [iteration]],
|
51 |
+
y: [[data.train_acc], [data.val_acc]]
|
52 |
+
}, [0, 1]);
|
53 |
+
|
54 |
+
// Update training logs
|
55 |
+
const logsDiv = document.getElementById('training-logs');
|
56 |
+
logsDiv.innerHTML = `
|
57 |
+
<p>Epoch: ${data.epoch + 1}</p>
|
58 |
+
<p>Training Loss: ${data.train_loss.toFixed(4)}</p>
|
59 |
+
<p>Training Accuracy: ${data.train_acc.toFixed(2)}%</p>
|
60 |
+
<p>Validation Loss: ${data.val_loss.toFixed(4)}</p>
|
61 |
+
<p>Validation Accuracy: ${data.val_acc.toFixed(2)}%</p>
|
62 |
+
`;
|
63 |
+
}
|
64 |
+
|
65 |
+
async function trainModel() {
|
66 |
+
console.log("Training started..."); // Debug log
|
67 |
+
const config = {
|
68 |
+
kernels: [
|
69 |
+
parseInt(document.getElementById('kernel1').value),
|
70 |
+
parseInt(document.getElementById('kernel2').value),
|
71 |
+
parseInt(document.getElementById('kernel3').value)
|
72 |
+
],
|
73 |
+
optimizer: document.getElementById('optimizer').value,
|
74 |
+
batch_size: parseInt(document.getElementById('batch_size').value),
|
75 |
+
epochs: parseInt(document.getElementById('epochs').value)
|
76 |
+
};
|
77 |
+
|
78 |
+
console.log("Config:", config); // Debug log
|
79 |
+
|
80 |
+
// Show progress section and initialize charts
|
81 |
+
document.getElementById('training-progress').classList.remove('hidden');
|
82 |
+
initializeCharts();
|
83 |
+
|
84 |
+
try {
|
85 |
+
// Connect to WebSocket
|
86 |
+
console.log("Connecting to WebSocket..."); // Debug log
|
87 |
+
ws = new WebSocket(`ws://${window.location.host}/ws/train`);
|
88 |
+
|
89 |
+
ws.onopen = function() {
|
90 |
+
console.log("WebSocket connection established");
|
91 |
+
// Send configuration once connected
|
92 |
+
ws.send(JSON.stringify(config));
|
93 |
+
console.log("Config sent to server"); // Debug log
|
94 |
+
};
|
95 |
+
|
96 |
+
ws.onmessage = function(event) {
|
97 |
+
console.log("Received message:", event.data); // Debug log
|
98 |
+
const data = JSON.parse(event.data);
|
99 |
+
if (data.status === "completed") {
|
100 |
+
alert('Training completed successfully!');
|
101 |
+
} else if (data.status === "error") {
|
102 |
+
alert('Error during training: ' + data.message);
|
103 |
+
} else {
|
104 |
+
updateCharts(data);
|
105 |
+
}
|
106 |
+
};
|
107 |
+
|
108 |
+
ws.onerror = function(error) {
|
109 |
+
console.error('WebSocket error:', error);
|
110 |
+
alert('Error connecting to training server');
|
111 |
+
};
|
112 |
+
|
113 |
+
ws.onclose = function() {
|
114 |
+
console.log('WebSocket connection closed');
|
115 |
+
};
|
116 |
+
|
117 |
+
} catch (error) {
|
118 |
+
console.error('Error:', error);
|
119 |
+
alert('Error during training: ' + error.message);
|
120 |
+
}
|
121 |
+
}
|
templates/index.html
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>MNIST Digit Classification</title>
|
7 |
+
<link rel="stylesheet" href="{{ url_for('static', path='/css/style.css') }}">
|
8 |
+
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap" rel="stylesheet">
|
9 |
+
</head>
|
10 |
+
<body>
|
11 |
+
<div class="container">
|
12 |
+
<h1>MNIST Digit Classification</h1>
|
13 |
+
<div class="card">
|
14 |
+
<p class="hero-text">Train and test neural networks for handwritten digit recognition using the MNIST dataset.</p>
|
15 |
+
</div>
|
16 |
+
<div class="button-container">
|
17 |
+
<a href="/train" class="btn">Train Model</a>
|
18 |
+
<a href="/inference" class="btn">Test Model</a>
|
19 |
+
</div>
|
20 |
+
|
21 |
+
<div class="features-grid">
|
22 |
+
<div class="card">
|
23 |
+
<h3>Train Models</h3>
|
24 |
+
<p>Configure and train custom neural networks with different architectures.</p>
|
25 |
+
</div>
|
26 |
+
<div class="card">
|
27 |
+
<h3>Compare Performance</h3>
|
28 |
+
<p>Train multiple models simultaneously and compare their performance.</p>
|
29 |
+
</div>
|
30 |
+
<div class="card">
|
31 |
+
<h3>Real-time Visualization</h3>
|
32 |
+
<p>Monitor training progress with live loss and accuracy curves.</p>
|
33 |
+
</div>
|
34 |
+
<div class="card">
|
35 |
+
<h3>Interactive Testing</h3>
|
36 |
+
<p>Draw digits and test the model's prediction capabilities in real-time.</p>
|
37 |
+
</div>
|
38 |
+
</div>
|
39 |
+
</div>
|
40 |
+
</body>
|
41 |
+
</html>
|
templates/inference.html
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>Test Model - MNIST</title>
|
7 |
+
<link rel="stylesheet" href="{{ url_for('static', path='/css/style.css') }}">
|
8 |
+
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap" rel="stylesheet">
|
9 |
+
</head>
|
10 |
+
<body>
|
11 |
+
<div class="container">
|
12 |
+
<h1>Test Your Model</h1>
|
13 |
+
<div class="card">
|
14 |
+
<p>Draw a digit (0-9) in the canvas below and click "Predict" to test the model.</p>
|
15 |
+
|
16 |
+
<div class="form-group">
|
17 |
+
<label for="model-select">Select Model</label>
|
18 |
+
<select id="model-select" required>
|
19 |
+
{% if available_models %}
|
20 |
+
{% for model in available_models %}
|
21 |
+
<option value="{{ model }}">{{ model }}</option>
|
22 |
+
{% endfor %}
|
23 |
+
{% else %}
|
24 |
+
<option value="">No models available - Train a model first</option>
|
25 |
+
{% endif %}
|
26 |
+
</select>
|
27 |
+
</div>
|
28 |
+
</div>
|
29 |
+
|
30 |
+
<canvas id="drawing-canvas" width="280" height="280"></canvas>
|
31 |
+
<div class="button-container">
|
32 |
+
<button onclick="clearCanvas()" class="btn">Clear Canvas</button>
|
33 |
+
<button onclick="predict()" class="btn" {% if not available_models %}disabled{% endif %}>Predict</button>
|
34 |
+
</div>
|
35 |
+
<div id="prediction-result" class="card hidden">
|
36 |
+
<!-- Prediction result will be displayed here -->
|
37 |
+
</div>
|
38 |
+
</div>
|
39 |
+
<script src="{{ url_for('static', path='/js/inference.js') }}"></script>
|
40 |
+
</body>
|
41 |
+
</html>
|
templates/train.html
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>Train Models - MNIST</title>
|
7 |
+
<link rel="stylesheet" href="{{ url_for('static', path='/css/style.css') }}">
|
8 |
+
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&family=Roboto+Mono&display=swap" rel="stylesheet">
|
9 |
+
</head>
|
10 |
+
<body>
|
11 |
+
<div class="container">
|
12 |
+
<h1>Train Your Model</h1>
|
13 |
+
<div class="button-container">
|
14 |
+
<a href="/train/single" class="btn">Train Single Model</a>
|
15 |
+
<a href="/train/compare" class="btn">Compare Models</a>
|
16 |
+
</div>
|
17 |
+
</div>
|
18 |
+
</body>
|
19 |
+
</html>
|
templates/train_compare.html
ADDED
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>Compare Models - MNIST</title>
|
7 |
+
<link rel="stylesheet" href="{{ url_for('static', path='/css/style.css') }}">
|
8 |
+
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
|
9 |
+
</head>
|
10 |
+
<body>
|
11 |
+
<div class="container">
|
12 |
+
<h1>Compare Models</h1>
|
13 |
+
<div class="models-grid">
|
14 |
+
<!-- Model 1 Configuration -->
|
15 |
+
<div class="model-config">
|
16 |
+
<h3>Model 1</h3>
|
17 |
+
<div class="network-config">
|
18 |
+
<h4>Network Architecture</h4>
|
19 |
+
<div class="block-config">
|
20 |
+
<div class="block">
|
21 |
+
<label for="model1_block1">Block-1:</label>
|
22 |
+
<select id="model1_block1" name="block1" class="form-select">
|
23 |
+
<option value="8">8</option>
|
24 |
+
<option value="16">16</option>
|
25 |
+
<option value="32" selected>32</option>
|
26 |
+
<option value="64">64</option>
|
27 |
+
<option value="128">128</option>
|
28 |
+
</select>
|
29 |
+
</div>
|
30 |
+
|
31 |
+
<div class="block">
|
32 |
+
<label for="model1_block2">Block-2:</label>
|
33 |
+
<select id="model1_block2" name="block2" class="form-select">
|
34 |
+
<option value="8">8</option>
|
35 |
+
<option value="16">16</option>
|
36 |
+
<option value="32">32</option>
|
37 |
+
<option value="64" selected>64</option>
|
38 |
+
<option value="128">128</option>
|
39 |
+
</select>
|
40 |
+
</div>
|
41 |
+
|
42 |
+
<div class="block">
|
43 |
+
<label for="model1_block3">Block-3:</label>
|
44 |
+
<select id="model1_block3" name="block3" class="form-select">
|
45 |
+
<option value="8">8</option>
|
46 |
+
<option value="16">16</option>
|
47 |
+
<option value="32">32</option>
|
48 |
+
<option value="64">64</option>
|
49 |
+
<option value="128" selected>128</option>
|
50 |
+
</select>
|
51 |
+
</div>
|
52 |
+
</div>
|
53 |
+
</div>
|
54 |
+
<div class="training-config">
|
55 |
+
<div class="config-item">
|
56 |
+
<label for="model1_optimizer">Optimizer:</label>
|
57 |
+
<select id="model1_optimizer" name="optimizer">
|
58 |
+
<option value="SGD" selected>SGD</option>
|
59 |
+
<option value="Adam">Adam</option>
|
60 |
+
</select>
|
61 |
+
</div>
|
62 |
+
<div class="config-item">
|
63 |
+
<label for="model1_batch_size">Batch Size:</label>
|
64 |
+
<select id="model1_batch_size" name="batch_size">
|
65 |
+
<option value="32">32</option>
|
66 |
+
<option value="64" selected>64</option>
|
67 |
+
<option value="128">128</option>
|
68 |
+
</select>
|
69 |
+
</div>
|
70 |
+
</div>
|
71 |
+
</div>
|
72 |
+
|
73 |
+
<!-- Model 2 Configuration -->
|
74 |
+
<div class="model-config">
|
75 |
+
<h3>Model 2</h3>
|
76 |
+
<div class="network-config">
|
77 |
+
<h4>Network Architecture</h4>
|
78 |
+
<div class="block-config">
|
79 |
+
<div class="block">
|
80 |
+
<label for="model2_block1">Block-1:</label>
|
81 |
+
<select id="model2_block1" name="block1" class="form-select">
|
82 |
+
<option value="8">8</option>
|
83 |
+
<option value="16">16</option>
|
84 |
+
<option value="32" selected>32</option>
|
85 |
+
<option value="64">64</option>
|
86 |
+
<option value="128">128</option>
|
87 |
+
</select>
|
88 |
+
</div>
|
89 |
+
|
90 |
+
<div class="block">
|
91 |
+
<label for="model2_block2">Block-2:</label>
|
92 |
+
<select id="model2_block2" name="block2" class="form-select">
|
93 |
+
<option value="8">8</option>
|
94 |
+
<option value="16">16</option>
|
95 |
+
<option value="32">32</option>
|
96 |
+
<option value="64" selected>64</option>
|
97 |
+
<option value="128">128</option>
|
98 |
+
</select>
|
99 |
+
</div>
|
100 |
+
|
101 |
+
<div class="block">
|
102 |
+
<label for="model2_block3">Block-3:</label>
|
103 |
+
<select id="model2_block3" name="block3" class="form-select">
|
104 |
+
<option value="8">8</option>
|
105 |
+
<option value="16">16</option>
|
106 |
+
<option value="32">32</option>
|
107 |
+
<option value="64">64</option>
|
108 |
+
<option value="128" selected>128</option>
|
109 |
+
</select>
|
110 |
+
</div>
|
111 |
+
</div>
|
112 |
+
</div>
|
113 |
+
<div class="training-config">
|
114 |
+
<div class="config-item">
|
115 |
+
<label for="model2_optimizer">Optimizer:</label>
|
116 |
+
<select id="model2_optimizer" name="optimizer">
|
117 |
+
<option value="SGD" selected>SGD</option>
|
118 |
+
<option value="Adam">Adam</option>
|
119 |
+
</select>
|
120 |
+
</div>
|
121 |
+
<div class="config-item">
|
122 |
+
<label for="model2_batch_size">Batch Size:</label>
|
123 |
+
<select id="model2_batch_size" name="batch_size">
|
124 |
+
<option value="32">32</option>
|
125 |
+
<option value="64" selected>64</option>
|
126 |
+
<option value="128">128</option>
|
127 |
+
</select>
|
128 |
+
</div>
|
129 |
+
</div>
|
130 |
+
</div>
|
131 |
+
</div>
|
132 |
+
|
133 |
+
<!-- Training Controls -->
|
134 |
+
<div class="controls">
|
135 |
+
<button id="startComparison" onclick="startComparison()">Start Comparison</button>
|
136 |
+
<button id="stopComparison" onclick="stopComparison()" disabled>Stop Comparison</button>
|
137 |
+
</div>
|
138 |
+
|
139 |
+
<!-- Training Progress -->
|
140 |
+
<div class="charts-container">
|
141 |
+
<div id="lossChart"></div>
|
142 |
+
<div id="accuracyChart"></div>
|
143 |
+
</div>
|
144 |
+
</div>
|
145 |
+
|
146 |
+
<style>
|
147 |
+
.container {
|
148 |
+
max-width: 1200px;
|
149 |
+
margin: 0 auto;
|
150 |
+
padding: 20px;
|
151 |
+
}
|
152 |
+
|
153 |
+
.models-grid {
|
154 |
+
display: grid;
|
155 |
+
grid-template-columns: 1fr 1fr;
|
156 |
+
gap: 20px;
|
157 |
+
margin-bottom: 20px;
|
158 |
+
}
|
159 |
+
|
160 |
+
.model-config {
|
161 |
+
padding: 20px;
|
162 |
+
border: 1px solid #ddd;
|
163 |
+
border-radius: 5px;
|
164 |
+
margin-bottom: 20px;
|
165 |
+
}
|
166 |
+
|
167 |
+
.network-config {
|
168 |
+
margin-bottom: 20px;
|
169 |
+
}
|
170 |
+
|
171 |
+
.network-config h4 {
|
172 |
+
margin: 0 0 15px 0;
|
173 |
+
font-size: 1.1em;
|
174 |
+
}
|
175 |
+
|
176 |
+
.block-config {
|
177 |
+
display: flex;
|
178 |
+
justify-content: space-between;
|
179 |
+
gap: 20px;
|
180 |
+
}
|
181 |
+
|
182 |
+
.block {
|
183 |
+
flex: 1;
|
184 |
+
}
|
185 |
+
|
186 |
+
.block label {
|
187 |
+
display: block;
|
188 |
+
margin-bottom: 5px;
|
189 |
+
font-weight: bold;
|
190 |
+
}
|
191 |
+
|
192 |
+
.training-config {
|
193 |
+
display: flex;
|
194 |
+
gap: 20px;
|
195 |
+
}
|
196 |
+
|
197 |
+
.config-item {
|
198 |
+
flex: 1;
|
199 |
+
}
|
200 |
+
|
201 |
+
.config-item label {
|
202 |
+
display: block;
|
203 |
+
margin-bottom: 5px;
|
204 |
+
font-weight: bold;
|
205 |
+
}
|
206 |
+
|
207 |
+
select {
|
208 |
+
width: 100%;
|
209 |
+
padding: 8px;
|
210 |
+
border: 1px solid #ddd;
|
211 |
+
border-radius: 4px;
|
212 |
+
}
|
213 |
+
|
214 |
+
.controls {
|
215 |
+
margin: 20px 0;
|
216 |
+
text-align: center;
|
217 |
+
}
|
218 |
+
|
219 |
+
button {
|
220 |
+
padding: 10px 20px;
|
221 |
+
margin-right: 10px;
|
222 |
+
border: none;
|
223 |
+
border-radius: 4px;
|
224 |
+
background-color: #007bff;
|
225 |
+
color: white;
|
226 |
+
cursor: pointer;
|
227 |
+
}
|
228 |
+
|
229 |
+
button:disabled {
|
230 |
+
background-color: #ccc;
|
231 |
+
cursor: not-allowed;
|
232 |
+
}
|
233 |
+
|
234 |
+
.charts-container {
|
235 |
+
display: flex;
|
236 |
+
flex-direction: column;
|
237 |
+
gap: 20px;
|
238 |
+
margin-top: 20px;
|
239 |
+
}
|
240 |
+
|
241 |
+
#lossChart, #accuracyChart {
|
242 |
+
height: 400px;
|
243 |
+
width: 100%;
|
244 |
+
}
|
245 |
+
|
246 |
+
h4 {
|
247 |
+
margin: 0 0 10px 0;
|
248 |
+
}
|
249 |
+
|
250 |
+
.section-title {
|
251 |
+
color: white;
|
252 |
+
font-weight: bold;
|
253 |
+
margin: 0 0 10px 0;
|
254 |
+
font-size: 1.1em;
|
255 |
+
text-transform: uppercase;
|
256 |
+
}
|
257 |
+
|
258 |
+
.network-config .section-title {
|
259 |
+
margin: 0 0 15px 0;
|
260 |
+
}
|
261 |
+
|
262 |
+
.config-item .section-title {
|
263 |
+
margin-bottom: 5px;
|
264 |
+
}
|
265 |
+
</style>
|
266 |
+
|
267 |
+
<script>
|
268 |
+
let ws;
|
269 |
+
let lossChart;
|
270 |
+
let accuracyChart;
|
271 |
+
|
272 |
+
// Initialize charts
|
273 |
+
document.addEventListener('DOMContentLoaded', function() {
|
274 |
+
// Loss chart configuration
|
275 |
+
const lossData = [
|
276 |
+
{
|
277 |
+
x: [],
|
278 |
+
y: [],
|
279 |
+
name: 'Model 1 Training Loss',
|
280 |
+
type: 'scatter'
|
281 |
+
},
|
282 |
+
{
|
283 |
+
x: [],
|
284 |
+
y: [],
|
285 |
+
name: 'Model 2 Training Loss',
|
286 |
+
type: 'scatter'
|
287 |
+
}
|
288 |
+
];
|
289 |
+
|
290 |
+
const lossLayout = {
|
291 |
+
title: 'Training Loss Comparison',
|
292 |
+
xaxis: {
|
293 |
+
title: 'Iterations',
|
294 |
+
rangemode: 'nonnegative'
|
295 |
+
},
|
296 |
+
yaxis: {
|
297 |
+
title: 'Loss',
|
298 |
+
rangemode: 'nonnegative'
|
299 |
+
}
|
300 |
+
};
|
301 |
+
|
302 |
+
// Accuracy chart configuration
|
303 |
+
const accuracyData = [
|
304 |
+
{
|
305 |
+
x: [],
|
306 |
+
y: [],
|
307 |
+
name: 'Model 1 Training Accuracy',
|
308 |
+
type: 'scatter'
|
309 |
+
},
|
310 |
+
{
|
311 |
+
x: [],
|
312 |
+
y: [],
|
313 |
+
name: 'Model 2 Training Accuracy',
|
314 |
+
type: 'scatter'
|
315 |
+
}
|
316 |
+
];
|
317 |
+
|
318 |
+
const accuracyLayout = {
|
319 |
+
title: 'Training Accuracy Comparison',
|
320 |
+
xaxis: {
|
321 |
+
title: 'Iterations',
|
322 |
+
rangemode: 'nonnegative'
|
323 |
+
},
|
324 |
+
yaxis: {
|
325 |
+
title: 'Accuracy (%)',
|
326 |
+
range: [0, 100]
|
327 |
+
}
|
328 |
+
};
|
329 |
+
|
330 |
+
// Create charts
|
331 |
+
Plotly.newPlot('lossChart', lossData, lossLayout);
|
332 |
+
Plotly.newPlot('accuracyChart', accuracyData, accuracyLayout);
|
333 |
+
});
|
334 |
+
|
335 |
+
function startComparison() {
|
336 |
+
// Disable start button and enable stop button
|
337 |
+
document.getElementById('startComparison').disabled = true;
|
338 |
+
document.getElementById('stopComparison').disabled = false;
|
339 |
+
|
340 |
+
// Get configuration for both models
|
341 |
+
const model1Config = {
|
342 |
+
block1: parseInt(document.getElementById('model1_block1').value),
|
343 |
+
block2: parseInt(document.getElementById('model1_block2').value),
|
344 |
+
block3: parseInt(document.getElementById('model1_block3').value),
|
345 |
+
optimizer: document.getElementById('model1_optimizer').value,
|
346 |
+
batch_size: parseInt(document.getElementById('model1_batch_size').value)
|
347 |
+
};
|
348 |
+
|
349 |
+
const model2Config = {
|
350 |
+
block1: parseInt(document.getElementById('model2_block1').value),
|
351 |
+
block2: parseInt(document.getElementById('model2_block2').value),
|
352 |
+
block3: parseInt(document.getElementById('model2_block3').value),
|
353 |
+
optimizer: document.getElementById('model2_optimizer').value,
|
354 |
+
batch_size: parseInt(document.getElementById('model2_batch_size').value)
|
355 |
+
};
|
356 |
+
|
357 |
+
// Setup WebSocket connection
|
358 |
+
ws = new WebSocket(`ws://${window.location.host}/ws/compare`);
|
359 |
+
|
360 |
+
ws.onmessage = function(event) {
|
361 |
+
const data = JSON.parse(event.data);
|
362 |
+
|
363 |
+
if (data.type === 'training_update') {
|
364 |
+
const modelIndex = data.data.model_id - 1; // 0 for model1, 1 for model2
|
365 |
+
|
366 |
+
// Update training metrics
|
367 |
+
Plotly.extendTraces('lossChart', {
|
368 |
+
x: [[data.data.step]],
|
369 |
+
y: [[data.data.train_loss]]
|
370 |
+
}, [modelIndex]);
|
371 |
+
|
372 |
+
Plotly.extendTraces('accuracyChart', {
|
373 |
+
x: [[data.data.step]],
|
374 |
+
y: [[data.data.train_acc]]
|
375 |
+
}, [modelIndex]);
|
376 |
+
}
|
377 |
+
else if (data.type === 'validation_update') {
|
378 |
+
const modelIndex = data.data.model_id - 1;
|
379 |
+
|
380 |
+
// Add validation points
|
381 |
+
Plotly.addTraces('lossChart', {
|
382 |
+
x: [data.data.step],
|
383 |
+
y: [data.data.val_loss],
|
384 |
+
name: `Model ${data.data.model_id} Validation Loss`,
|
385 |
+
mode: 'markers',
|
386 |
+
marker: { size: 8 }
|
387 |
+
});
|
388 |
+
|
389 |
+
Plotly.addTraces('accuracyChart', {
|
390 |
+
x: [data.data.step],
|
391 |
+
y: [data.data.val_acc],
|
392 |
+
name: `Model ${data.data.model_id} Validation Accuracy`,
|
393 |
+
mode: 'markers',
|
394 |
+
marker: { size: 8 }
|
395 |
+
});
|
396 |
+
}
|
397 |
+
else if (data.type === 'comparison_complete') {
|
398 |
+
document.getElementById('startComparison').disabled = false;
|
399 |
+
document.getElementById('stopComparison').disabled = true;
|
400 |
+
}
|
401 |
+
};
|
402 |
+
|
403 |
+
// Start comparison
|
404 |
+
ws.send(JSON.stringify({
|
405 |
+
type: 'start_comparison',
|
406 |
+
model1: model1Config,
|
407 |
+
model2: model2Config
|
408 |
+
}));
|
409 |
+
}
|
410 |
+
|
411 |
+
function stopComparison() {
|
412 |
+
if (ws) {
|
413 |
+
ws.close();
|
414 |
+
}
|
415 |
+
document.getElementById('startComparison').disabled = false;
|
416 |
+
document.getElementById('stopComparison').disabled = true;
|
417 |
+
}
|
418 |
+
</script>
|
419 |
+
</body>
|
420 |
+
</html>
|
templates/train_single.html
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>Train Single Model - MNIST</title>
|
7 |
+
<link rel="stylesheet" href="{{ url_for('static', path='/css/style.css') }}">
|
8 |
+
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
|
9 |
+
</head>
|
10 |
+
<body>
|
11 |
+
<div class="container">
|
12 |
+
<h1>Train Single Model</h1>
|
13 |
+
|
14 |
+
<!-- Network Architecture Section -->
|
15 |
+
<div class="model-config">
|
16 |
+
<h3>Model Configuration</h3>
|
17 |
+
<div class="network-config">
|
18 |
+
<h4>Network Architecture</h4>
|
19 |
+
<div class="block-config">
|
20 |
+
<div class="block">
|
21 |
+
<label for="block1">Block-1:</label>
|
22 |
+
<select id="block1" name="block1" class="form-select">
|
23 |
+
<option value="8">8</option>
|
24 |
+
<option value="16">16</option>
|
25 |
+
<option value="32" selected>32</option>
|
26 |
+
<option value="64">64</option>
|
27 |
+
<option value="128">128</option>
|
28 |
+
</select>
|
29 |
+
</div>
|
30 |
+
|
31 |
+
<div class="block">
|
32 |
+
<label for="block2">Block-2:</label>
|
33 |
+
<select id="block2" name="block2" class="form-select">
|
34 |
+
<option value="8">8</option>
|
35 |
+
<option value="16">16</option>
|
36 |
+
<option value="32">32</option>
|
37 |
+
<option value="64" selected>64</option>
|
38 |
+
<option value="128">128</option>
|
39 |
+
</select>
|
40 |
+
</div>
|
41 |
+
|
42 |
+
<div class="block">
|
43 |
+
<label for="block3">Block-3:</label>
|
44 |
+
<select id="block3" name="block3" class="form-select">
|
45 |
+
<option value="8">8</option>
|
46 |
+
<option value="16">16</option>
|
47 |
+
<option value="32">32</option>
|
48 |
+
<option value="64">64</option>
|
49 |
+
<option value="128" selected>128</option>
|
50 |
+
</select>
|
51 |
+
</div>
|
52 |
+
</div>
|
53 |
+
</div>
|
54 |
+
<div class="training-config">
|
55 |
+
<div class="config-item">
|
56 |
+
<label for="optimizer">Optimizer:</label>
|
57 |
+
<select id="optimizer" name="optimizer">
|
58 |
+
<option value="SGD" selected>SGD</option>
|
59 |
+
<option value="Adam">Adam</option>
|
60 |
+
</select>
|
61 |
+
</div>
|
62 |
+
<div class="config-item">
|
63 |
+
<label for="batch_size">Batch Size:</label>
|
64 |
+
<select id="batch_size" name="batch_size">
|
65 |
+
<option value="32">32</option>
|
66 |
+
<option value="64" selected>64</option>
|
67 |
+
<option value="128">128</option>
|
68 |
+
</select>
|
69 |
+
</div>
|
70 |
+
</div>
|
71 |
+
</div>
|
72 |
+
|
73 |
+
<!-- Training Controls -->
|
74 |
+
<div class="controls">
|
75 |
+
<button id="startTraining" onclick="startTraining()">Start Training</button>
|
76 |
+
<button id="stopTraining" onclick="stopTraining()" disabled>Stop Training</button>
|
77 |
+
</div>
|
78 |
+
|
79 |
+
<!-- Training Progress -->
|
80 |
+
<div class="charts-container">
|
81 |
+
<div id="lossChart"></div>
|
82 |
+
<div id="accuracyChart"></div>
|
83 |
+
</div>
|
84 |
+
</div>
|
85 |
+
|
86 |
+
<script>
|
87 |
+
let ws;
|
88 |
+
let lossChart;
|
89 |
+
let accuracyChart;
|
90 |
+
|
91 |
+
// Initialize charts
|
92 |
+
document.addEventListener('DOMContentLoaded', function() {
|
93 |
+
// Loss chart configuration
|
94 |
+
const lossData = [
|
95 |
+
{
|
96 |
+
x: [],
|
97 |
+
y: [],
|
98 |
+
name: 'Training Loss',
|
99 |
+
type: 'scatter'
|
100 |
+
},
|
101 |
+
{
|
102 |
+
x: [],
|
103 |
+
y: [],
|
104 |
+
name: 'Validation Loss',
|
105 |
+
type: 'scatter'
|
106 |
+
}
|
107 |
+
];
|
108 |
+
|
109 |
+
const lossLayout = {
|
110 |
+
title: 'Loss',
|
111 |
+
xaxis: {
|
112 |
+
title: 'Iterations',
|
113 |
+
rangemode: 'nonnegative'
|
114 |
+
},
|
115 |
+
yaxis: {
|
116 |
+
title: 'Loss',
|
117 |
+
rangemode: 'nonnegative'
|
118 |
+
}
|
119 |
+
};
|
120 |
+
|
121 |
+
// Accuracy chart configuration
|
122 |
+
const accuracyData = [
|
123 |
+
{
|
124 |
+
x: [],
|
125 |
+
y: [],
|
126 |
+
name: 'Training Accuracy',
|
127 |
+
type: 'scatter'
|
128 |
+
},
|
129 |
+
{
|
130 |
+
x: [],
|
131 |
+
y: [],
|
132 |
+
name: 'Validation Accuracy',
|
133 |
+
type: 'scatter'
|
134 |
+
}
|
135 |
+
];
|
136 |
+
|
137 |
+
const accuracyLayout = {
|
138 |
+
title: 'Accuracy',
|
139 |
+
xaxis: {
|
140 |
+
title: 'Iterations',
|
141 |
+
rangemode: 'nonnegative'
|
142 |
+
},
|
143 |
+
yaxis: {
|
144 |
+
title: 'Accuracy (%)',
|
145 |
+
range: [0, 100]
|
146 |
+
}
|
147 |
+
};
|
148 |
+
|
149 |
+
// Create charts
|
150 |
+
Plotly.newPlot('lossChart', lossData, lossLayout);
|
151 |
+
Plotly.newPlot('accuracyChart', accuracyData, accuracyLayout);
|
152 |
+
});
|
153 |
+
|
154 |
+
function startTraining() {
|
155 |
+
// Disable start button and enable stop button
|
156 |
+
document.getElementById('startTraining').disabled = true;
|
157 |
+
document.getElementById('stopTraining').disabled = false;
|
158 |
+
|
159 |
+
// Clear previous charts
|
160 |
+
Plotly.purge('lossChart');
|
161 |
+
Plotly.purge('accuracyChart');
|
162 |
+
|
163 |
+
// Initialize new charts
|
164 |
+
const lossData = [
|
165 |
+
{
|
166 |
+
x: [],
|
167 |
+
y: [],
|
168 |
+
name: 'Training Loss',
|
169 |
+
type: 'scatter'
|
170 |
+
},
|
171 |
+
{
|
172 |
+
x: [],
|
173 |
+
y: [],
|
174 |
+
name: 'Validation Loss',
|
175 |
+
type: 'scatter'
|
176 |
+
}
|
177 |
+
];
|
178 |
+
|
179 |
+
const accuracyData = [
|
180 |
+
{
|
181 |
+
x: [],
|
182 |
+
y: [],
|
183 |
+
name: 'Training Accuracy',
|
184 |
+
type: 'scatter'
|
185 |
+
},
|
186 |
+
{
|
187 |
+
x: [],
|
188 |
+
y: [],
|
189 |
+
name: 'Validation Accuracy',
|
190 |
+
type: 'scatter'
|
191 |
+
}
|
192 |
+
];
|
193 |
+
|
194 |
+
Plotly.newPlot('lossChart', lossData, {
|
195 |
+
title: 'Loss',
|
196 |
+
xaxis: { title: 'Iterations', rangemode: 'nonnegative' },
|
197 |
+
yaxis: { title: 'Loss', rangemode: 'nonnegative' }
|
198 |
+
});
|
199 |
+
|
200 |
+
Plotly.newPlot('accuracyChart', accuracyData, {
|
201 |
+
title: 'Accuracy',
|
202 |
+
xaxis: { title: 'Iterations', rangemode: 'nonnegative' },
|
203 |
+
yaxis: { title: 'Accuracy (%)', range: [0, 100] }
|
204 |
+
});
|
205 |
+
|
206 |
+
// Setup WebSocket connection
|
207 |
+
ws = new WebSocket(`ws://${window.location.host}/ws/train`);
|
208 |
+
|
209 |
+
ws.onopen = function() {
|
210 |
+
console.log("WebSocket connection established");
|
211 |
+
// Send configuration through WebSocket
|
212 |
+
const config = {
|
213 |
+
block1: parseInt(document.getElementById('block1').value),
|
214 |
+
block2: parseInt(document.getElementById('block2').value),
|
215 |
+
block3: parseInt(document.getElementById('block3').value),
|
216 |
+
optimizer: document.getElementById('optimizer').value,
|
217 |
+
batch_size: parseInt(document.getElementById('batch_size').value),
|
218 |
+
epochs: 1 // Add default epochs value
|
219 |
+
};
|
220 |
+
ws.send(JSON.stringify(config));
|
221 |
+
};
|
222 |
+
|
223 |
+
ws.onerror = function(error) {
|
224 |
+
console.error("WebSocket error:", error);
|
225 |
+
stopTraining();
|
226 |
+
alert("Error connecting to training server");
|
227 |
+
};
|
228 |
+
|
229 |
+
ws.onclose = function() {
|
230 |
+
console.log("WebSocket connection closed");
|
231 |
+
stopTraining();
|
232 |
+
};
|
233 |
+
|
234 |
+
ws.onmessage = function(event) {
|
235 |
+
const data = JSON.parse(event.data);
|
236 |
+
|
237 |
+
if (data.type === 'training_update') {
|
238 |
+
// Update training metrics (trace index 0)
|
239 |
+
Plotly.extendTraces('lossChart', {
|
240 |
+
x: [[data.data.step]],
|
241 |
+
y: [[data.data.train_loss]]
|
242 |
+
}, [0]);
|
243 |
+
|
244 |
+
Plotly.extendTraces('accuracyChart', {
|
245 |
+
x: [[data.data.step]],
|
246 |
+
y: [[data.data.train_acc]]
|
247 |
+
}, [0]);
|
248 |
+
}
|
249 |
+
else if (data.type === 'validation_update') {
|
250 |
+
// Update validation metrics (trace index 1)
|
251 |
+
Plotly.extendTraces('lossChart', {
|
252 |
+
x: [[data.data.step]],
|
253 |
+
y: [[data.data.val_loss]]
|
254 |
+
}, [1]);
|
255 |
+
|
256 |
+
Plotly.extendTraces('accuracyChart', {
|
257 |
+
x: [[data.data.step]],
|
258 |
+
y: [[data.data.val_acc]]
|
259 |
+
}, [1]);
|
260 |
+
}
|
261 |
+
else if (data.type === 'training_complete') {
|
262 |
+
alert(data.data.message);
|
263 |
+
stopTraining();
|
264 |
+
}
|
265 |
+
else if (data.type === 'training_error') {
|
266 |
+
alert(data.data.message);
|
267 |
+
stopTraining();
|
268 |
+
}
|
269 |
+
};
|
270 |
+
}
|
271 |
+
|
272 |
+
function stopTraining() {
|
273 |
+
if (ws) {
|
274 |
+
ws.close();
|
275 |
+
}
|
276 |
+
document.getElementById('startTraining').disabled = false;
|
277 |
+
document.getElementById('stopTraining').disabled = true;
|
278 |
+
}
|
279 |
+
</script>
|
280 |
+
|
281 |
+
<style>
|
282 |
+
.container {
|
283 |
+
max-width: 1200px;
|
284 |
+
margin: 0 auto;
|
285 |
+
padding: 20px;
|
286 |
+
}
|
287 |
+
|
288 |
+
.model-config {
|
289 |
+
padding: 20px;
|
290 |
+
border: 1px solid #ddd;
|
291 |
+
border-radius: 5px;
|
292 |
+
margin-bottom: 20px;
|
293 |
+
}
|
294 |
+
|
295 |
+
.network-config {
|
296 |
+
margin-bottom: 20px;
|
297 |
+
}
|
298 |
+
|
299 |
+
.network-config h4 {
|
300 |
+
margin: 0 0 15px 0;
|
301 |
+
font-size: 1.1em;
|
302 |
+
}
|
303 |
+
|
304 |
+
.block-config {
|
305 |
+
display: flex;
|
306 |
+
justify-content: space-between;
|
307 |
+
gap: 20px;
|
308 |
+
}
|
309 |
+
|
310 |
+
.block {
|
311 |
+
flex: 1;
|
312 |
+
}
|
313 |
+
|
314 |
+
.block label {
|
315 |
+
display: block;
|
316 |
+
margin-bottom: 5px;
|
317 |
+
font-weight: bold;
|
318 |
+
}
|
319 |
+
|
320 |
+
.training-config {
|
321 |
+
display: flex;
|
322 |
+
gap: 20px;
|
323 |
+
}
|
324 |
+
|
325 |
+
.config-item {
|
326 |
+
flex: 1;
|
327 |
+
}
|
328 |
+
|
329 |
+
.config-item label {
|
330 |
+
display: block;
|
331 |
+
margin-bottom: 5px;
|
332 |
+
font-weight: bold;
|
333 |
+
}
|
334 |
+
|
335 |
+
select {
|
336 |
+
width: 100%;
|
337 |
+
padding: 8px;
|
338 |
+
border: 1px solid #ddd;
|
339 |
+
border-radius: 4px;
|
340 |
+
}
|
341 |
+
|
342 |
+
.controls {
|
343 |
+
margin: 20px 0;
|
344 |
+
}
|
345 |
+
|
346 |
+
button {
|
347 |
+
padding: 10px 20px;
|
348 |
+
margin-right: 10px;
|
349 |
+
border: none;
|
350 |
+
border-radius: 4px;
|
351 |
+
background-color: #007bff;
|
352 |
+
color: white;
|
353 |
+
cursor: pointer;
|
354 |
+
}
|
355 |
+
|
356 |
+
button:disabled {
|
357 |
+
background-color: #ccc;
|
358 |
+
cursor: not-allowed;
|
359 |
+
}
|
360 |
+
|
361 |
+
.charts-container {
|
362 |
+
display: flex;
|
363 |
+
flex-direction: column;
|
364 |
+
gap: 20px;
|
365 |
+
margin-top: 20px;
|
366 |
+
}
|
367 |
+
|
368 |
+
#lossChart, #accuracyChart {
|
369 |
+
height: 400px;
|
370 |
+
width: 100%;
|
371 |
+
}
|
372 |
+
</style>
|
373 |
+
</body>
|
374 |
+
</html>
|