File size: 9,945 Bytes
6f5f635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import numpy as np
import gzip
import os
from pathlib import Path
from datetime import datetime
import urllib.request
import shutil
from tqdm import tqdm
import asyncio

def download_and_extract_mnist_data():
    """Download and extract MNIST dataset from a reliable mirror"""
    base_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
    files = {
        "train_images": "train-images-idx3-ubyte.gz",
        "train_labels": "train-labels-idx1-ubyte.gz",
        "test_images": "t10k-images-idx3-ubyte.gz",
        "test_labels": "t10k-labels-idx1-ubyte.gz"
    }
    
    data_dir = Path("data/MNIST/raw")
    data_dir.mkdir(parents=True, exist_ok=True)
    
    for file_name in files.values():
        gz_file_path = data_dir / file_name
        extracted_file_path = data_dir / file_name.replace('.gz', '')

        # If the extracted file exists, skip downloading
        if extracted_file_path.exists():
            print(f"{extracted_file_path} already exists, skipping download.")
            continue

        # Download the file
        print(f"Downloading {file_name}...")
        url = base_url + file_name
        try:
            urllib.request.urlretrieve(url, gz_file_path)
            print(f"Successfully downloaded {file_name}")
        except Exception as e:
            print(f"Failed to download {file_name}: {e}")
            raise Exception(f"Could not download {file_name}")

        # Extract the files
        try:
            print(f"Extracting {file_name}...")
            with gzip.open(gz_file_path, 'rb') as f_in:
                with open(extracted_file_path, 'wb') as f_out:
                    shutil.copyfileobj(f_in, f_out)
            print(f"Successfully extracted {file_name}")
        except Exception as e:
            print(f"Failed to extract {file_name}: {e}")
            raise Exception(f"Could not extract {file_name}")

def load_mnist_images(filename):
    with open(filename, 'rb') as f:
        data = np.frombuffer(f.read(), np.uint8, offset=16)
    return data.reshape(-1, 1, 28, 28).astype(np.float32) / 255.0

def load_mnist_labels(filename):
    with open(filename, 'rb') as f:
        return np.frombuffer(f.read(), np.uint8, offset=8)

class CustomMNISTDataset(Dataset):
    def __init__(self, images_path, labels_path, transform=None):
        self.images = load_mnist_images(images_path)
        self.labels = load_mnist_labels(labels_path)
        self.transform = transform

    def __len__(self):
        return len(self.labels)

    def __getitem__(self, idx):
        image = torch.FloatTensor(self.images[idx])
        label = int(self.labels[idx])
        
        if self.transform:
            image = self.transform(image)
            
        return image, label

def validate(model, test_loader, criterion, device):
    """Modified validate function to handle validation properly"""
    model.eval()
    val_loss = 0
    correct = 0
    total = 0
    num_batches = 0

    with torch.no_grad():  # Important: no gradient computation in validation
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            val_loss += criterion(output, target).item()  # Don't scale by batch size
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
            num_batches += 1

    # Average the loss by number of batches and accuracy by total samples
    val_loss = val_loss / num_batches  # Average loss across batches
    val_acc = 100. * correct / total
    
    return val_loss, val_acc

async def train(model, config, websocket=None):
    print("\nStarting training...")
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")
    model = model.to(device)

    # Create data directory if it doesn't exist
    data_dir = Path("data")
    data_dir.mkdir(exist_ok=True)

    # Ensure data is downloaded and extracted
    print("Preparing dataset...")
    download_and_extract_mnist_data()

    # Paths to the extracted files
    train_images_path = "data/MNIST/raw/train-images-idx3-ubyte"
    train_labels_path = "data/MNIST/raw/train-labels-idx1-ubyte"
    test_images_path = "data/MNIST/raw/t10k-images-idx3-ubyte"
    test_labels_path = "data/MNIST/raw/t10k-labels-idx1-ubyte"

    # Data loading
    transform = transforms.Compose([
        transforms.Normalize((0.1307,), (0.3081,))
    ])

    train_dataset = CustomMNISTDataset(train_images_path, train_labels_path, transform=transform)
    test_dataset = CustomMNISTDataset(test_images_path, test_labels_path, transform=transform)

    train_loader = DataLoader(train_dataset, batch_size=config.batch_size, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=config.batch_size, shuffle=False)

    print(f"Dataset loaded. Training samples: {len(train_dataset)}, Test samples: {len(test_dataset)}")

    # Initialize optimizer based on config
    if config.optimizer.lower() == 'adam':
        optimizer = optim.Adam(model.parameters())
    else:
        optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

    criterion = nn.CrossEntropyLoss()
    
    print("\nTraining Configuration:")
    print(f"Optimizer: {config.optimizer}")
    print(f"Batch Size: {config.batch_size}")
    print(f"Network Architecture: {config.block1}-{config.block2}-{config.block3}")
    print("\nStarting training loop...")

    best_val_acc = 0
    history = {
        'train_loss': [],
        'train_acc': [],
        'val_loss': [],
        'val_acc': []
    }

    try:
        for epoch in range(config.epochs):
            model.train()
            total_loss = 0
            correct = 0
            total = 0
            
            # Create progress bar for each epoch
            progress_bar = tqdm(
                train_loader,
                desc=f"Epoch {epoch+1}/{config.epochs}",
                unit='batch',
                leave=True
            )

            for batch_idx, (data, target) in enumerate(progress_bar):
                data, target = data.to(device), target.to(device)
                optimizer.zero_grad()
                output = model(data)
                loss = criterion(output, target)
                loss.backward()
                optimizer.step()

                # Calculate batch accuracy
                pred = output.argmax(dim=1, keepdim=True)
                correct += pred.eq(target.view_as(pred)).sum().item()
                total += target.size(0)
                total_loss += loss.item()

                # Calculate current metrics
                current_loss = total_loss / (batch_idx + 1)
                current_acc = 100. * correct / total

                # Update progress bar description
                progress_bar.set_postfix({
                    'loss': f'{current_loss:.4f}',
                    'acc': f'{current_acc:.2f}%'
                })

                # Send training update through websocket
                if websocket:
                    try:
                        await websocket.send_json({
                            'type': 'training_update',
                            'data': {
                                'step': batch_idx + epoch * len(train_loader),
                                'train_loss': current_loss,
                                'train_acc': current_acc
                            }
                        })
                    except Exception as e:
                        print(f"Error sending websocket update: {e}")

            # Calculate epoch metrics
            train_loss = total_loss / len(train_loader)
            train_acc = 100. * correct / total

            # Validation phase
            model.eval()
            val_loss = 0
            val_correct = 0
            val_total = 0

            print("\nRunning validation...")
            with torch.no_grad():
                for data, target in test_loader:
                    data, target = data.to(device), target.to(device)
                    output = model(data)
                    val_loss += criterion(output, target).item()
                    pred = output.argmax(dim=1, keepdim=True)
                    val_correct += pred.eq(target.view_as(pred)).sum().item()
                    val_total += target.size(0)

            val_loss /= len(test_loader)
            val_acc = 100. * val_correct / val_total

            # Print epoch results
            print(f"\nEpoch {epoch+1}/{config.epochs} Results:")
            print(f"Training Loss: {train_loss:.4f} | Training Accuracy: {train_acc:.2f}%")
            print(f"Val Loss: {val_loss:.4f} | Val Accuracy: {val_acc:.2f}%")

            # Send validation update through websocket
            if websocket:
                try:
                    await websocket.send_json({
                        'type': 'validation_update',
                        'data': {
                            'step': (epoch + 1) * len(train_loader),
                            'val_loss': val_loss,
                            'val_acc': val_acc
                        }
                    })
                except Exception as e:
                    print(f"Error sending websocket update: {e}")

            # Save best model
            if val_acc > best_val_acc:
                best_val_acc = val_acc
                print(f"\nNew best validation accuracy: {val_acc:.2f}%")
                print("Saving model...")
                torch.save(model.state_dict(), 'best_model.pth')

    except Exception as e:
        print(f"\nError during training: {e}")
        raise e

    print("\nTraining completed!")
    print(f"Best validation accuracy: {best_val_acc:.2f}%")
    return history