Shashidhar226 commited on
Commit
cace86c
·
verified ·
1 Parent(s): 4fb1649

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +182 -0
app.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from io import BytesIO
3
+ from PIL import Image
4
+ from transformers import ViltProcessor, ViltForQuestionAnswering
5
+ import requests
6
+ import torch
7
+ import torchvision
8
+
9
+ from langchain.prompts import PromptTemplate
10
+ from langchain.chains import LLMChain
11
+ from langchain.chat_models import ChatOpenAI
12
+
13
+ from transformers import AutoProcessor, AutoModelForCausalLM
14
+ from huggingface_hub import hf_hub_download
15
+
16
+ from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
17
+ from transformers import BlipProcessor, BlipForConditionalGeneration
18
+ import os
19
+
20
+ os.environ["OPENAI_API_KEY"] = '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'
21
+ llm = ChatOpenAI(temperature=0.2, model_name="gpt-3.5-turbo")
22
+ prompt = PromptTemplate(
23
+ input_variables=["question", "elements"],
24
+ template="""You are a helpful assistant that can answer question related to an image. You have the ability to see the image and answer questions about it.
25
+ I will give you a question and element about the image and you will answer the question.
26
+ \n\n
27
+ #Question: {question}
28
+ #Elements: {elements}
29
+ \n\n
30
+ Your structured response:""",
31
+ )
32
+
33
+ def convert_png_to_jpg(image):
34
+ rgb_image = image.convert('RGB')
35
+ byte_arr = BytesIO()
36
+ rgb_image.save(byte_arr, format='JPEG')
37
+ byte_arr.seek(0)
38
+ return Image.open(byte_arr)
39
+
40
+ def vilt(image, query):
41
+ processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
42
+ model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
43
+ encoding = processor(image, query, return_tensors="pt")
44
+ outputs = model(**encoding)
45
+ logits = outputs.logits
46
+ idx = logits.argmax(-1).item()
47
+ sol = model.config.id2label[idx]
48
+ return sol
49
+
50
+ def blip(image, query):
51
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
52
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
53
+ # unconditional image captioning
54
+ inputs = processor(image, return_tensors="pt")
55
+
56
+ out = model.generate(**inputs)
57
+ sol = processor.decode(out[0], skip_special_tokens=True)
58
+ return sol
59
+
60
+ def GIT(image, query):
61
+ processor = AutoProcessor.from_pretrained("microsoft/git-base-textvqa")
62
+ model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-textvqa")
63
+
64
+ # file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset")
65
+ # image = Image.open(file_path).convert("RGB")
66
+
67
+ pixel_values = processor(images=image, return_tensors="pt").pixel_values
68
+
69
+ question = query
70
+
71
+ input_ids = processor(text=question, add_special_tokens=False).input_ids
72
+ input_ids = [processor.tokenizer.cls_token_id] + input_ids
73
+ input_ids = torch.tensor(input_ids).unsqueeze(0)
74
+
75
+ generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
76
+ response = processor.batch_decode(generated_ids, skip_special_tokens=True)
77
+
78
+ generated_ids_1 = model.generate(pixel_values=pixel_values, max_length=50)
79
+ generated_caption = processor.batch_decode(generated_ids_1, skip_special_tokens=True)[0]
80
+
81
+ return response[0] + " " + generated_caption
82
+
83
+ @st.cache_data(show_spinner="Processing image...")
84
+ def generate_table(uploaded_file):
85
+ image = Image.open(uploaded_file)
86
+ print("graph start")
87
+ model = Pix2StructForConditionalGeneration.from_pretrained('google/deplot')
88
+ processor = Pix2StructProcessor.from_pretrained('google/deplot')
89
+ print("graph start 1")
90
+ inputs = processor(images=image, text="Generate underlying data table of the figure below and give the text as well:", return_tensors="pt")
91
+ predictions = model.generate(**inputs, max_new_tokens=512)
92
+ print("end")
93
+ table = processor.decode(predictions[0], skip_special_tokens=True)
94
+ print(table)
95
+ return table
96
+
97
+ def process_query(image, query):
98
+ blip_sol = blip(image, query)
99
+ vilt_sol = vilt(image, query)
100
+ GIT_sol = GIT(image, query)
101
+ llm_sol = blip_sol + " " + vilt_sol + " " + GIT_sol
102
+ print(llm_sol)
103
+ chain = LLMChain(llm=llm, prompt=prompt)
104
+ response = chain.run(question=query, elements=llm_sol)
105
+ return response
106
+
107
+ def process_query_graph(data_table, query):
108
+ prompt = PromptTemplate(
109
+ input_variables=["question", "elements"],
110
+ template="""You are a helpful assistant capable of answering questions related to graph images.
111
+ You possess the ability to view the graph image and respond to inquiries about it.
112
+ I will provide you with a question and the associated data table of the graph, and you will answer the question
113
+ \n\n
114
+ #Question: {question}
115
+ #Elements: {elements}
116
+ \n\n
117
+ Your structured response:""",
118
+ )
119
+ chain = LLMChain(llm=llm, prompt=prompt)
120
+ response = chain.run(question=query, elements=data_table)
121
+ return response
122
+
123
+ def chart_with_Image():
124
+ st.header("Chat with Image", divider='rainbow')
125
+ uploaded_file = st.file_uploader('Upload your IMAGE', type=['png', 'jpeg', 'jpg'], key="imageUploader")
126
+ if uploaded_file is not None:
127
+ image = Image.open(uploaded_file)
128
+
129
+ # ViLT model only supports JPG images
130
+ if image.format == 'PNG':
131
+ image = convert_png_to_jpg(image)
132
+
133
+ st.image(image, caption='Uploaded Image.', width=300)
134
+
135
+ cancel_button = st.button('Cancel')
136
+ query = st.text_input('Ask a question to the IMAGE')
137
+
138
+ if query:
139
+ with st.spinner('Processing...'):
140
+ answer = process_query(image, query)
141
+ st.write(answer)
142
+
143
+ if cancel_button:
144
+ st.stop()
145
+
146
+ def chat_with_graph():
147
+ st.header("Chat with Graph", divider='rainbow')
148
+ uploaded_file = st.file_uploader('Upload your GRAPH', type=['png', 'jpeg', 'jpg'], key="graphUploader")
149
+
150
+ if uploaded_file is not None:
151
+ image = Image.open(uploaded_file)
152
+
153
+ # if image.format == 'PNG':
154
+ # image = convert_png_to_jpg(image)
155
+
156
+ # data_table = generate_table(uploaded_file)
157
+
158
+ st.image(image, caption='Uploaded Image.')
159
+ data_table = generate_table(uploaded_file)
160
+ cancel_button = st.button('Cancel')
161
+ query = st.text_input('Ask a question to the IMAGE')
162
+ if query:
163
+ with st.spinner('Processing...'):
164
+ answer = process_query_graph(data_table, query)
165
+ st.write(answer)
166
+
167
+ if cancel_button:
168
+ st.stop()
169
+
170
+ st.title("Image Querying App ")
171
+ option = st.selectbox(
172
+ "Who would you like to chart with?",
173
+ ("Image", "Graph"),
174
+ index=None,
175
+ placeholder="Select contact method...",
176
+ )
177
+
178
+ st.write('You selected:', option)
179
+ if option == "Image":
180
+ chart_with_Image()
181
+ elif option == "Graph":
182
+ chat_with_graph()