File size: 3,132 Bytes
d75759d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ece64d
d75759d
 
 
 
 
 
 
 
9ece64d
d75759d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45b5556
 
 
 
d75759d
45b5556
 
 
 
d75759d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ece64d
d75759d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
import streamlit as st
from langchain.llms import HuggingFaceHub
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate


class UserInterface():

    def __init__(self, ):
        st.warning("Warning: Some models may not work and some models may require GPU to run")
        st.text("An Open Source Chat Application")
        st.header("Open LLMs")

        self.API_KEY = st.sidebar.text_input(
            'API Key',
            type='password',
            help="Type in your HuggingFace API key to use this app"
        )

        models_name = (
            "HuggingFaceH4/zephyr-7b-beta",
            "Open-Orca/Mistral-7B-OpenOrca",
        )
        self.models = st.sidebar.selectbox(
            label="Choose your models",
            options=models_name,
            help="Choose your model",
        )

        self.temperature = st.sidebar.slider(
            label='Temperature',
            min_value=0.1,
            max_value=1.0,
            step=0.1,
            value=0.5,
            help="Set the temperature to get the accurate or random result"
        )

        self.max_token_length = st.sidebar.slider(
            label="Token Length",
            min_value=32,
            max_value=2048,
            step=16,
            value=64,
            help="Set max tokens to generate the maximum amount of text output"
        )


        self.model_kwargs = {
            "temperature": self.temperature,
            "max_length": self.max_token_length
        }

        os.environ['HUGGINGFACEHUB_API_TOKEN'] = self.API_KEY

    
    def form_data(self):

        try:
            if not self.API_KEY.startswith('hf_'):
                st.warning('Please enter your API key!', icon='⚠')
                text_input_visibility = True
            
            
            st.subheader("Context")
            context = st.text_input(
                    label="Context",
                    disabled=text_input_visibility
                )
            st.subheader("Question")
            question = st.text_input(
                    label="Question",    
                    disabled=text_input_visibility
                )


            template = """
            Answer the question based on the context, if you don't know then output "Out of Context"
            Context: {context}
            Question: {question}

            Answer: 
            """
            prompt = PromptTemplate(
                template=template,
                input_variables=[
                    'question',
                    'context'
                ]
            )
            llm = HuggingFaceHub(
                repo_id = self.models,
                model_kwargs = self.model_kwargs
            )

            llm_chain = LLMChain(
                prompt=prompt,
                llm=llm,
            )

            result = llm_chain.run({
                "question": question,
                "context": context
            })

            st.markdown(result)
        except Exception as e:
            st.error(e, icon="🚨")

model = UserInterface()
model.form_data()