Spaces:
Running
Running
File size: 20,710 Bytes
23eb257 7b93e70 23eb257 7ec19ea 5f2f11a 62d9d4a 23eb257 a74e5af 62d9d4a 23eb257 62d9d4a 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 7ec19ea a74e5af 23eb257 a74e5af 7ec19ea 23eb257 7ec19ea 23eb257 a74e5af 7ec19ea 23eb257 a74e5af 23eb257 5f2f11a 23eb257 5f2f11a 84c3e78 5f2f11a 62d9d4a 5f2f11a 62d9d4a 5f2f11a 62d9d4a 84c3e78 62d9d4a f96fa2c 62d9d4a f96fa2c 62d9d4a 84c3e78 62d9d4a 84c3e78 62d9d4a 84c3e78 62d9d4a 5f2f11a 8a3e91a a74e5af c029e87 7ec19ea a74e5af 7ec19ea a74e5af 7ec19ea 8a3e91a a74e5af c029e87 7ec19ea a74e5af 7ec19ea a74e5af 5f2f11a 23eb257 62d9d4a 8a3e91a 5f2f11a 8a3e91a 23eb257 5f2f11a 23eb257 5f2f11a 23eb257 5f2f11a 23eb257 5f2f11a 84c3e78 5f2f11a 23eb257 5f2f11a 62d9d4a 5f2f11a 62d9d4a 5f2f11a 84c3e78 62d9d4a 84c3e78 f96fa2c 62d9d4a 84c3e78 62d9d4a f96fa2c 84c3e78 62d9d4a 84c3e78 62d9d4a 5f2f11a 23eb257 1dee67f 5f2f11a 62d9d4a 5f2f11a 84c3e78 5f2f11a 62d9d4a 84c3e78 62d9d4a 5f2f11a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
import gradio as gr
import torch
from transformers import pipeline
from huggingface_hub import InferenceClient
from PIL import Image, ImageDraw
from gradio_client import Client, handle_file
import numpy as np
import cv2
import os
import tempfile
import io
import base64
import requests
from collections import OrderedDict
import uuid
# Инициализация моделей
from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation
device = "cuda" if torch.cuda.is_available() else "cpu"
# oneFormer segmentation
oneFormer_processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny")
oneFormer_model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny").to(device)
# classification = pipeline("image-classification", model="google/vit-base-patch16-224")
# upscaling_client = InferenceClient(model="stabilityai/stable-diffusion-x4-upscaler")
# inpainting_client = InferenceClient(model="stabilityai/stable-diffusion-inpainting")
# Функции для обработки изображений
def segment_image(image):
inputs = oneFormer_processor(image, task_inputs=["panoptic"], return_tensors="pt")
with torch.no_grad():
outputs = oneFormer_model(**inputs)
# post-process the raw predictions
predicted_panoptic_map = oneFormer_processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# Extract segment ids and masks
segmentation_map = predicted_panoptic_map["segmentation"].cpu().numpy()
segments_info = predicted_panoptic_map["segments_info"]
# Create cropped masks
cropped_masks_with_labels = []
label_counts = {}
for segment in segments_info:
mask = (segmentation_map == segment["id"]).astype(np.uint8) * 255
# cropped_image = cv2.bitwise_and(np.array(image), np.array(image), mask=mask)
cropped_image = np.zeros((image.height, image.width, 4), dtype=np.uint8)
cropped_image[mask != 0, :3] = np.array(image)[mask != 0]
cropped_image[mask != 0, 3] = 255
label = oneFormer_model.config.id2label[segment["label_id"]]
# Check if label already exists
if label in label_counts:
label_counts[label] += 1
else:
label_counts[label] = 1
label = f"{label}_{label_counts[label] - 1}" # Append _0, _1, etc.
cropped_masks_with_labels.append((cropped_image, label))
return cropped_masks_with_labels
def merge_segments_by_labels(gallery_images, labels_input):
labels_to_merge = [label.strip() for label in labels_input.split(";")]
merged_image = None
merged_indices = []
for i, (image_path, label) in enumerate(gallery_images): # Исправлено: image_path
if label in labels_to_merge:
# Загружаем изображение с помощью PIL, сохраняя альфа-канал
image = Image.open(image_path).convert("RGBA")
if merged_image is None:
merged_image = image.copy()
else:
# Объединяем изображения с учетом альфа-канала
merged_image = Image.alpha_composite(merged_image, image)
merged_indices.append(i)
if merged_image is not None:
# Преобразуем объединенное изображение в numpy array
merged_image_np = np.array(merged_image)
new_gallery_images = [
item for i, item in enumerate(gallery_images) if i not in merged_indices
]
new_name = labels_to_merge[0]
new_gallery_images.append((merged_image_np, new_name))
return new_gallery_images
else:
return gallery_images
def select_segment(segment_output, segment_name):
for i, (image_path, label) in enumerate(segment_output):
if label == segment_name:
return image_path
#Image edit
def return_image(imageEditor):
return imageEditor['composite']
def return_image2(image):
return image
def rembg_client(request: gr.Request):
try:
client = Client("KenjieDec/RemBG", headers={"X-IP-Token": request.headers['x-ip-token']})
print("KenjieDec/RemBG Ip token")
return client
except:
print("KenjieDec/RemBG no token")
return Client("KenjieDec/RemBG")
def autocrop_image(imageEditor, border = 0):
image = imageEditor['composite']
bbox = image.getbbox()
image = image.crop(bbox)
(width, height) = image.size
width += border * 2
height += border * 2
cropped_image = Image.new("RGBA", (width, height), (0,0,0,0))
cropped_image.paste(image, (border, border))
return cropped_image
def remove_black_make_transparent(imageEditor):
image_pil = imageEditor['composite']
if image_pil.mode != "RGBA":
image_pil = image_pil.convert("RGBA")
image_np = np.array(image_pil)
black_pixels_mask = np.all(image_np[:, :, :3] == [0, 0, 0], axis=-1)
image_np[black_pixels_mask, 3] = 0
transparent_image = Image.fromarray(image_np)
return transparent_image
def rembg(imageEditor, rembg_model, request: gr.Request):
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
imageEditor['composite'].save(temp_file.name)
temp_file_path = temp_file.name
client = rembg_client(request)
result = client.predict(
file=handle_file(temp_file_path),
mask="Default",
model=rembg_model,
x=0,
y=0,
api_name="/inference"
)
print(result)
return result
def add_transparent_border(imageEditor, border_size=200):
image = imageEditor['composite']
width, height = image.size
new_width = width + 2 * border_size
new_height = height + 2 * border_size
new_image = Image.new("RGBA", (new_width, new_height), (0, 0, 0, 0))
new_image.paste(image, (border_size, border_size))
return new_image
def upscale(imageEditor, scale, request: gr.Request):
return upscale_image(imageEditor['composite'], version="v1.4", rescaling_factor=scale)
def upscale_image(image_pil, version="v1.4", rescaling_factor=None):
buffered = io.BytesIO()
image_pil.save(buffered, format="PNG") # Save as PNG
img_str = base64.b64encode(buffered.getvalue()).decode()
# Update the data format for PNG
data = {"data": [f"data:image/png;base64,{img_str}", version, rescaling_factor]}
# Send request to the API
response = requests.post("https://nightfury-image-face-upscale-restoration-gfpgan.hf.space/api/predict", json=data)
response.raise_for_status()
# Get the base64 data from the response
base64_data = response.json()["data"][0]
base64_data = base64_data.split(",")[1] # remove data:image/png;base64,
# Convert base64 back to PIL Image
image_bytes = base64.b64decode(base64_data)
upscaled_image = Image.open(io.BytesIO(image_bytes))
return upscaled_image
# def inpainting(source_img, request: gr.Request):
# input_image = source_img["background"].convert("RGB")
# mask_image = source_img["layers"][0].convert("RGB")
# return inpainting_image(imageEditor['composite'])
def inpainting_client(request: gr.Request):
try:
client = Client("ameerazam08/FLUX.1-dev-Inpainting-Model-Beta-GPU", headers={"X-IP-Token": request.headers['x-ip-token']})
print("ameerazam08/FLUX.1-dev-Inpainting-Model-Beta-GPU Ip token")
return client
except:
print("ameerazam08/FLUX.1-dev-Inpainting-Model-Beta-GPU no token")
return Client("ameerazam08/FLUX.1-dev-Inpainting-Model-Beta-GPU")
def inpainting_run(input_image_editor,
prompt,
negative_prompt,
controlnet_conditioning_scale,
guidance_scale,
seed,
num_inference_steps,
true_guidance_scale,
request: gr.Request
):
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
# hr_image.save(temp_file.name)
print("inpainting_run")
print(len(input_image_editor["layers"]))
print(input_image_editor["layers"])
print(input_image_editor["layers"][0])
input_image_editor["background"].save(temp_file.name)
temp_file_path = temp_file.name #картинка
print("background", temp_file_path)
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file2:
input_image_editor["layers"][0].save(temp_file2.name)
temp_file_path2 = temp_file2.name # маска
print("маска", temp_file_path2)
# client = Client("ameerazam08/FLUX.1-dev-Inpainting-Model-Beta-GPU")
client = inpainting_client(request)
result = client.predict(
input_image_editor={"background":handle_file(temp_file_path),"layers":[handle_file(temp_file_path2)],"composite":None},
prompt=prompt,
negative_prompt=negative_prompt,
controlnet_conditioning_scale=controlnet_conditioning_scale,
guidance_scale=guidance_scale,
seed=seed,
num_inference_steps=num_inference_steps,
true_guidance_scale=true_guidance_scale,
api_name="/process"
)
print(result)
return result
#3d models
def hunyuan_client(request: gr.Request):
try:
client = Client("tencent/Hunyuan3D-2", headers={"X-IP-Token": request.headers['x-ip-token']})
print("tencent/Hunyuan3D-2 Ip token")
return client
except:
print("tencent/Hunyuan3D-2 no token")
return Client("tencent/Hunyuan3D-2")
def vFusion_client(request: gr.Request):
try:
client = Client("facebook/VFusion3D", headers={"X-IP-Token": request.headers['x-ip-token']})
print("facebook/VFusion3D Ip token")
return client
except:
print("facebook/VFusion3D no token")
return Client("facebook/VFusion3D")
def generate_3d_model(image_pil, rembg_Hunyuan, request: gr.Request):
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
image_pil.save(temp_file.name)
temp_file_path = temp_file.name
client = hunyuan_client(request)
result = client.predict(
caption="",
image=handle_file(temp_file_path),
steps=50,
guidance_scale=5.5,
seed=1234,
octree_resolution="256",
check_box_rembg=rembg_Hunyuan,
api_name="/shape_generation"
)
print(result)
return result[0]
def generate_3d_model_texture(image_pil, rembg_Hunyuan, request: gr.Request):
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
image_pil.save(temp_file.name)
temp_file_path = temp_file.name
client = hunyuan_client(request)
result = client.predict(
caption="",
image=handle_file(temp_file_path),
steps=50,
guidance_scale=5.5,
seed=1234,
octree_resolution="256",
check_box_rembg=rembg_Hunyuan,
api_name="/generation_all"
)
print(result)
return result[1]
def generate_3d_model2(image_pil, request: gr.Request):
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
image_pil.save(temp_file.name)
temp_file_path = temp_file.name
client = vFusion_client(request)
result = client.predict(
image=handle_file(temp_file_path),
api_name="/step_1_generate_obj"
)
print(result)
return result[0]
### some configs
negative_prompt_str = "text, bad anatomy, bad proportions, blurry, cropped, deformed, disfigured, duplicate, error, extra limbs, gross proportions, jpeg artifacts, long neck, low quality, lowres, malformed, morbid, mutated, mutilated, out of frame, ugly, worst quality"
positive_prompt_str = "Full HD, 4K, high quality, high resolution"
########## GRADIO ##########
with gr.Blocks() as demo:
gr.Markdown("# Анализ и редактирование помещений")
with gr.Tab("Сканирование"):
with gr.Row(equal_height=True):
with gr.Column(scale=5):
image_input = gr.Image(type="pil", label="Исходное изображение", height = 400)
segment_button = gr.Button("Сегментировать")
with gr.Column(scale=5):
segments_output = gr.Gallery(label="Сегменты изображения")
merge_segments_input = gr.Textbox(label="Сегменты для объединения (через точку с запятой, например: \"wall_0; tv_0\")")
merge_segments_button = gr.Button("Соединить сегменты")
merge_segments_button.click(merge_segments_by_labels, inputs=[segments_output, merge_segments_input], outputs=segments_output)
with gr.Row(equal_height=True):
segment_text_input = gr.Textbox(label="Имя сегмента для дальнейшего редактирования")
select_segment_button = gr.Button("Использовать сегмент")
with gr.Tab("Редактирование"):
with gr.Row(equal_height=True):
with gr.Column(scale=5):
segment_input = gr.ImageEditor(type="pil", label="Сегмент для редактирования")
with gr.Column(scale=5):
crop_button = gr.Button("Обрезать сегмент")
with gr.Row(equal_height=True):
upscale_slider = gr.Slider(minimum=1, maximum=5, value=2, step=0.1, label="во сколько раз")
upscale_button = gr.Button("Upscale")
with gr.Row(equal_height=True):
rembg_model_selector = gr.Dropdown(
[
"u2net",
"u2netp",
"u2net_human_seg",
"u2net_cloth_seg",
"silueta",
"isnet-general-use",
"isnet-anime",
"birefnet-general",
"birefnet-general-lite",
"birefnet-portrait",
"birefnet-dis",
"birefnet-hrsod",
"birefnet-cod",
"birefnet-massive"
],
value="birefnet-general-lite",
label="Rembg model"
)
rembg_button = gr.Button("Rembg")
remove_background_button = gr.Button("Убрать черный задний фон")
with gr.Row(equal_height=True):
add_transparent_border_slider = gr.Slider(minimum=10, maximum=500, value=200, step=10, label="в пикселях")
add_transparent_border_button = gr.Button("Добавить прозрачные края")
use_inpainting_button = gr.Button("Использовать сегмент для Inpainting")
use_button = gr.Button("Использовать сегмент для 3D")
with gr.Tab("Inpainting"):
with gr.Row(equal_height=True):
with gr.Column(scale=5):
# inpainting_input = gr.ImageEditor(type="pil", label="Сегмент для Inpainting")
gr.Markdown("У gradio.ImageEditor какой-то странный баг. Если у вас застряла мышка при попытке нарисовать маску - перейдите на 1-й слой. Для маски будет выбран 1-й слой из списка. Для маски используется белый цвет.")
imageMask = gr.ImageEditor(
label='Сегмент для Inpainting',
type='pil',
# sources=["upload", "webcam"],
# image_mode='RGB',
# layers=False,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed")
)
prompt = gr.Textbox(lines=2, label="Введите промпт для Inpainting", placeholder="Enter prompt here...")
inpainting_button = gr.Button("Inpainting")
with gr.Accordion('Advanced options', open=False):
negative_prompt = gr.Textbox(lines=2, value=negative_prompt_str, label="Negative prompt", placeholder="Enter negative_prompt here...")
controlnet_conditioning_scale = gr.Slider(minimum=0, step=0.01, maximum=1, value=0.9, label="controlnet_conditioning_scale")
guidance_scale = gr.Slider(minimum=1, step=0.5, maximum=10, value=3.5, label="Image to generate")
seed = gr.Slider(minimum=0, step=1, maximum=10000000, value=124, label="Seed Value")
num_inference_steps = gr.Slider(minimum=1, step=1, maximum=30, value=24, label="num_inference_steps")
true_guidance_scale = gr.Slider(minimum=1, step=1, maximum=10, value=3.5, label="true_guidance_scale")
with gr.Column(scale=5):
after_inpainting = gr.Image(type="pil", label="Изображение после Inpainting")
use_inpainting_button2 = gr.Button("Вернуться к редактированию")
use_button2 = gr.Button("Использовать сегмент для 3D")
with gr.Tab("Создание 3D"):
with gr.Row(equal_height=True):
with gr.Column(scale=5):
segment_3d_input = gr.Image(type="pil", image_mode="RGBA", label="Сегмент для 3D", height = 600)
rembg_Hunyuan = gr.Checkbox(label="Hunyuan3D-2 rembg Enabled", info="Включить rembg для Hunyuan3D-2?")
hunyuan_button = gr.Button("Hunyuan3D-2 (no texture) [ZeroGPU = 100s]")
hunyuan_button_texture = gr.Button("Hunyuan3D-2 (with texture) [ZeroGPU = 150s]")
vFusion_button = gr.Button("VFusion3D [если у вас совсем все грустно по ZeroGPU]")
with gr.Column(scale=5):
trellis_output = gr.Model3D(label="3D Model")
#tab1
segment_button.click(segment_image, inputs=image_input, outputs=segments_output)
select_segment_button.click(select_segment, inputs=[segments_output, segment_text_input], outputs=segment_input)
#tab2
crop_button.click(autocrop_image, inputs=segment_input, outputs=segment_input)
upscale_button.click(upscale, inputs=[segment_input, upscale_slider], outputs=segment_input)
rembg_button.click(rembg, inputs=[segment_input, rembg_model_selector], outputs=segment_input)
remove_background_button.click(remove_black_make_transparent, inputs=segment_input, outputs=segment_input)
add_transparent_border_button.click(add_transparent_border, inputs=[segment_input, add_transparent_border_slider], outputs=segment_input)
use_inpainting_button.click(return_image, inputs=segment_input, outputs=imageMask)
use_button.click(return_image, inputs=segment_input, outputs=segment_3d_input)
#tab3
# inpainting_button.click(inpainting, inputs=inpainting_input, outputs=inpainting_input)
inpainting_button.click(
fn=inpainting_run,
inputs=[
imageMask,
prompt,
negative_prompt,
controlnet_conditioning_scale,
guidance_scale,
seed,
num_inference_steps,
true_guidance_scale
],
outputs=after_inpainting
)
use_inpainting_button2.click(return_image2, inputs=after_inpainting, outputs=segment_input)
use_button2.click(return_image2, inputs=after_inpainting, outputs=segment_3d_input)
#3d buttons
hunyuan_button.click(generate_3d_model, inputs=[segment_3d_input, rembg_Hunyuan], outputs=trellis_output)
hunyuan_button_texture.click(generate_3d_model_texture, inputs=[segment_3d_input, rembg_Hunyuan], outputs=trellis_output)
vFusion_button.click(generate_3d_model2, inputs=segment_3d_input, outputs=trellis_output)
demo.launch(debug=True, show_error=True) |