File size: 12,996 Bytes
23eb257
 
 
 
7b93e70
 
23eb257
 
 
 
 
 
 
 
 
a74e5af
 
 
23eb257
a74e5af
 
 
23eb257
 
 
 
 
a74e5af
23eb257
 
a74e5af
23eb257
 
a74e5af
23eb257
 
 
 
 
 
 
 
 
 
 
a74e5af
23eb257
a74e5af
 
 
 
 
23eb257
 
 
 
 
 
 
 
 
 
 
 
a74e5af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23eb257
 
 
 
 
a74e5af
23eb257
a74e5af
 
 
23eb257
 
 
a74e5af
 
23eb257
 
 
a74e5af
 
 
23eb257
 
 
 
a74e5af
23eb257
 
 
 
 
a74e5af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23eb257
 
a74e5af
 
 
 
 
 
 
 
 
 
 
 
 
1dee67f
a74e5af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dee67f
a74e5af
 
23eb257
 
 
 
a74e5af
23eb257
a74e5af
1dee67f
23eb257
 
a74e5af
 
 
 
 
 
23eb257
a74e5af
 
 
23eb257
a74e5af
 
 
23eb257
 
a74e5af
23eb257
 
a74e5af
 
23eb257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a74e5af
 
 
23eb257
a74e5af
1dee67f
 
 
 
 
 
 
 
 
 
 
 
 
 
a74e5af
1dee67f
 
 
23eb257
 
 
 
a74e5af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23eb257
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import gradio as gr
import torch
from transformers import pipeline
from huggingface_hub import InferenceClient
from PIL import Image, ImageDraw
from gradio_client import Client, handle_file
import numpy as np
import cv2


# Инициализация моделей
from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation

device = "cuda" if torch.cuda.is_available() else "cpu"

# oneFormer segmentation
oneFormer_processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny")
oneFormer_model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny").to(device)

# classification = pipeline("image-classification", model="google/vit-base-patch16-224")
# upscaling_client = InferenceClient(model="stabilityai/stable-diffusion-x4-upscaler")
# inpainting_client = InferenceClient(model="stabilityai/stable-diffusion-inpainting")


# Функции для обработки изображений
def segment_image(image):
    image = Image.fromarray(image)
    inputs = oneFormer_processor(image, task_inputs=["panoptic"], return_tensors="pt")

    with torch.no_grad():
        outputs = oneFormer_model(**inputs)

    # post-process the raw predictions
    predicted_panoptic_map = oneFormer_processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]

    # Extract segment ids and masks
    segmentation_map = predicted_panoptic_map["segmentation"].cpu().numpy()
    segments_info = predicted_panoptic_map["segments_info"]

    # Create cropped masks
    cropped_masks_with_labels = []
    label_counts = {}

    for segment in segments_info:
        mask = (segmentation_map == segment["id"]).astype(np.uint8) * 255
        # cropped_image = cv2.bitwise_and(np.array(image), np.array(image), mask=mask)

        cropped_image = np.zeros((image.height, image.width, 4), dtype=np.uint8)
        cropped_image[mask != 0, :3] = np.array(image)[mask != 0]
        cropped_image[mask != 0, 3] = 255

        label = oneFormer_model.config.id2label[segment["label_id"]]

        # Check if label already exists
        if label in label_counts:
            label_counts[label] += 1
        else:
            label_counts[label] = 1
        label = f"{label}_{label_counts[label] - 1}"  # Append _0, _1, etc.

        cropped_masks_with_labels.append((cropped_image, label))

    return cropped_masks_with_labels

# def merge_segments_by_labels(gallery_images, labels_input):
#     """
#     Объединяет сегменты из галереи изображений в одно изображение,
#     основываясь на введенных пользователем метках.

#     Args:
#         gallery_images: Список изображений сегментов (кортежи (изображение, метка)).
#         labels_input: Строка с метками, разделенными точкой с запятой.

#     Returns:
#         Список изображений, где выбранные сегменты объединены в одно.
#     """
#     labels_to_merge = [label.strip() for label in labels_input.split(";")]
#     merged_image = None
#     merged_indices = []

#     for i, (image_path, label) in enumerate(gallery_images):
#         if label in labels_to_merge:
#             image = cv2.imread(image_path)
#             if merged_image is None:
#                 merged_image = image.copy()
#             else:
#                 merged_image = cv2.add(merged_image, image)
#             merged_indices.append(i)
#     if merged_image is not None:
#         new_gallery_images = [
#             item for i, item in enumerate(gallery_images) if i not in merged_indices
#         ]
        
#         new_name = labels_to_merge[0]
#         new_gallery_images.append((merged_image, new_name))
        
#         return new_gallery_images
#     else:
#         return gallery_images


def merge_segments_by_labels(gallery_images, labels_input):
    labels_to_merge = [label.strip() for label in labels_input.split(";")]
    merged_image = None
    merged_indices = []

    for i, (image_path, label) in enumerate(gallery_images):  # Исправлено: image_path
        if label in labels_to_merge:
            # Загружаем изображение с помощью PIL, сохраняя альфа-канал
            image = Image.open(image_path).convert("RGBA")  

            if merged_image is None:
                merged_image = image.copy()
            else:
                # Объединяем изображения с учетом альфа-канала
                merged_image = Image.alpha_composite(merged_image, image)  
            merged_indices.append(i)
    
    if merged_image is not None:
        # Преобразуем объединенное изображение в numpy array
        merged_image_np = np.array(merged_image)  
        
        new_gallery_images = [
            item for i, item in enumerate(gallery_images) if i not in merged_indices
        ]
        new_name = labels_to_merge[0]
        new_gallery_images.append((merged_image_np, new_name))
        return new_gallery_images
    else:
        return gallery_images


# def set_client_for_session(request: gr.Request):
#     x_ip_token = request.headers['x-ip-token']
#     return Client("JeffreyXiang/TRELLIS", headers={"X-IP-Token": x_ip_token})

def set_hunyuan_client(request: gr.Request):
    try:
        x_ip_token = request.headers['x-ip-token']
        return Client("tencent/Hunyuan3D-2", headers={"X-IP-Token": x_ip_token})
    except:
        return Client("tencent/Hunyuan3D-2")
    
def set_vFusion_client(request: gr.Request):
    try:
        x_ip_token = request.headers['x-ip-token']
        return Client("facebook/VFusion3D", headers={"X-IP-Token": x_ip_token})
    except:
        return Client("facebook/VFusion3D")

# def generate_3d_model(client, segment_output, segment_name):
#     for i, (image_path, label) in enumerate(segment_output):
#         if label == segment_name:
#             result = client.predict(
#                 image=handle_file(image_path),
#                 multiimages=[],
#                 seed=0,
#                 ss_guidance_strength=7.5,
#                 ss_sampling_steps=12,
#                 slat_guidance_strength=3,
#                 slat_sampling_steps=12,
#                 multiimage_algo="stochastic",
#                 api_name="/image_to_3d"
#             )
#             break
#     print(result)
#     return result["video"]

def generate_3d_model(client, segment_output, segment_name):
    for i, (image_path, label) in enumerate(segment_output):
        if label == segment_name:
            result = client.predict(
                caption="",
                image=handle_file(image_path),
                steps=50,
                guidance_scale=5.5,
                seed=1234,
                octree_resolution="256",
                check_box_rembg=True,
                api_name="/shape_generation"
            )
            print(result)
            return (result[0], result[0])

def generate_3d_model_texture(client, segment_output, segment_name):
    for i, (image_path, label) in enumerate(segment_output):
        if label == segment_name:
            result = client.predict(
                caption="",
                image=handle_file(image_path),
                steps=50,
                guidance_scale=5.5,
                seed=1234,
                octree_resolution="256",
                check_box_rembg=True,
                api_name="/generation_all"
            )
            print(result)
            return (result[1], result[1])

def generate_3d_model2(client, segment_output, segment_name):
    for i, (image_path, label) in enumerate(segment_output):
        if label == segment_name:
            result = client.predict(
                image=handle_file(image_path),
                api_name="/step_1_generate_obj"
            )
            print(result)
            return (result[0], result[0])


# def classify_segments(segments):
#     # Предполагается, что segments - список изображений сегментов
#     results = []
#     for segment in segments:
#         results.append(classification(segment))
#     return results  # Вернем список классификаций

# def upscale_segment(segment):
#     upscaled = upscaling_client.image_to_image(segment)
#     return upscaled

# def inpaint_image(image, mask, prompt):
#     inpainted = inpainting_client.text_to_image(prompt, image=image, mask=mask)
#     return inpainted


from gradio_litmodel3d import LitModel3D

with gr.Blocks() as demo:
    hunyuan_client = gr.State()
    vFusion_client = gr.State()

    gr.Markdown("# Анализ и редактирование помещений")

    with gr.Tab("Сканирование"):
        with gr.Row():
            with gr.Column(scale=5):
                image_input = gr.Image()
                segment_button = gr.Button("Сегментировать")
            with gr.Column(scale=5):
                segment_output = gr.Gallery()
                merge_segments_input = gr.Textbox(label="Сегменты для объединения (через точку с запятой, например: \"wall_0; tv_0\")")
                merge_segments_button = gr.Button("Соединить сегменты")
                merge_segments_button.click(merge_segments_by_labels, inputs=[segment_output, merge_segments_input], outputs=segment_output)
        with gr.Row():
            with gr.Column(scale=5):
                trellis_input = gr.Textbox(label="Имя сегмента для 3D")
                hunyuan_button = gr.Button("Hunyuan3D-2")
                hunyuan_button_texture = gr.Button("Hunyuan3D-2 (with texture)")
                vFusion_button = gr.Button("VFusion3D")
            with gr.Column(scale=5):
                # trellis_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
                # trellis_output2 = LitModel3D(
                #     clear_color=[0.1, 0.1, 0.1, 0],  # can adjust background color for better contrast
                #     label="3D Model Visualization",
                #     scale=1.0,
                #     tonemapping="aces",  # can use aces tonemapping for more realistic lighting
                #     exposure=1.0,        # can adjust exposure to control brightness
                #     contrast=1.1,        # can slightly increase contrast for better depth
                #     camera_position=(0, 0, 2),  # will set initial camera position to center the model
                #     zoom_speed=0.5,      # will adjust zoom speed for better control
                #     pan_speed=0.5,       # will adjust pan speed for better control
                #     interactive=True     # this allow users to interact with the model
                # )
                trellis_output = gr.Model3D(label="3D Model")
                trellis_output2 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0],  label="3D Model Wireframe")
                # trellis_button.click(generate_3d_model, inputs=[client, segment_output, trellis_input], outputs=trellis_output)
                hunyuan_button.click(generate_3d_model, inputs=[hunyuan_client, segment_output, trellis_input], outputs=[trellis_output, trellis_output2])
                hunyuan_button_texture.click(generate_3d_model_texture, inputs=[hunyuan_client, segment_output, trellis_input], outputs=[trellis_output, trellis_output2])
                vFusion_button.click(generate_3d_model2, inputs=[vFusion_client, segment_output, trellis_input], outputs=[trellis_output, trellis_output2])

        segment_button.click(segment_image, inputs=image_input, outputs=segment_output)
        # segment_button.click(segment_full_image, inputs=image_input, outputs=segment_output)

    # with gr.Tab("Редактирование"):
    #     segment_input = gr.Image()
    #     upscale_output = gr.Image()
    #     upscale_button = gr.Button("Upscale")
    #     upscale_button.click(upscale_segment, inputs=segment_input, outputs=upscale_output)

    #     mask_input = gr.Image()
    #     prompt_input = gr.Textbox()
    #     inpaint_output = gr.Image()
    #     inpaint_button = gr.Button("Inpaint")
    #     inpaint_button.click(inpaint_image, inputs=[segment_input, mask_input, prompt_input], outputs=inpaint_output)

    # with gr.Tab("Создание 3D моделей"):
    #     segment_input_3d = gr.Image()
    #     model_output = gr.File()
    #     model_button = gr.Button("Создать 3D модель")
    #     model_button.click(generate_3d_model, inputs=segment_input_3d, outputs=model_output)

    demo.load(set_hunyuan_client, None, hunyuan_client)
    demo.load(set_vFusion_client, None, vFusion_client)

demo.launch(debug=True, show_error=True)