Spaces:
Running
Running
File size: 12,996 Bytes
23eb257 7b93e70 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 1dee67f a74e5af 1dee67f a74e5af 23eb257 a74e5af 23eb257 a74e5af 1dee67f 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 23eb257 a74e5af 1dee67f a74e5af 1dee67f 23eb257 a74e5af 23eb257 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import gradio as gr
import torch
from transformers import pipeline
from huggingface_hub import InferenceClient
from PIL import Image, ImageDraw
from gradio_client import Client, handle_file
import numpy as np
import cv2
# Инициализация моделей
from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation
device = "cuda" if torch.cuda.is_available() else "cpu"
# oneFormer segmentation
oneFormer_processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny")
oneFormer_model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny").to(device)
# classification = pipeline("image-classification", model="google/vit-base-patch16-224")
# upscaling_client = InferenceClient(model="stabilityai/stable-diffusion-x4-upscaler")
# inpainting_client = InferenceClient(model="stabilityai/stable-diffusion-inpainting")
# Функции для обработки изображений
def segment_image(image):
image = Image.fromarray(image)
inputs = oneFormer_processor(image, task_inputs=["panoptic"], return_tensors="pt")
with torch.no_grad():
outputs = oneFormer_model(**inputs)
# post-process the raw predictions
predicted_panoptic_map = oneFormer_processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# Extract segment ids and masks
segmentation_map = predicted_panoptic_map["segmentation"].cpu().numpy()
segments_info = predicted_panoptic_map["segments_info"]
# Create cropped masks
cropped_masks_with_labels = []
label_counts = {}
for segment in segments_info:
mask = (segmentation_map == segment["id"]).astype(np.uint8) * 255
# cropped_image = cv2.bitwise_and(np.array(image), np.array(image), mask=mask)
cropped_image = np.zeros((image.height, image.width, 4), dtype=np.uint8)
cropped_image[mask != 0, :3] = np.array(image)[mask != 0]
cropped_image[mask != 0, 3] = 255
label = oneFormer_model.config.id2label[segment["label_id"]]
# Check if label already exists
if label in label_counts:
label_counts[label] += 1
else:
label_counts[label] = 1
label = f"{label}_{label_counts[label] - 1}" # Append _0, _1, etc.
cropped_masks_with_labels.append((cropped_image, label))
return cropped_masks_with_labels
# def merge_segments_by_labels(gallery_images, labels_input):
# """
# Объединяет сегменты из галереи изображений в одно изображение,
# основываясь на введенных пользователем метках.
# Args:
# gallery_images: Список изображений сегментов (кортежи (изображение, метка)).
# labels_input: Строка с метками, разделенными точкой с запятой.
# Returns:
# Список изображений, где выбранные сегменты объединены в одно.
# """
# labels_to_merge = [label.strip() for label in labels_input.split(";")]
# merged_image = None
# merged_indices = []
# for i, (image_path, label) in enumerate(gallery_images):
# if label in labels_to_merge:
# image = cv2.imread(image_path)
# if merged_image is None:
# merged_image = image.copy()
# else:
# merged_image = cv2.add(merged_image, image)
# merged_indices.append(i)
# if merged_image is not None:
# new_gallery_images = [
# item for i, item in enumerate(gallery_images) if i not in merged_indices
# ]
# new_name = labels_to_merge[0]
# new_gallery_images.append((merged_image, new_name))
# return new_gallery_images
# else:
# return gallery_images
def merge_segments_by_labels(gallery_images, labels_input):
labels_to_merge = [label.strip() for label in labels_input.split(";")]
merged_image = None
merged_indices = []
for i, (image_path, label) in enumerate(gallery_images): # Исправлено: image_path
if label in labels_to_merge:
# Загружаем изображение с помощью PIL, сохраняя альфа-канал
image = Image.open(image_path).convert("RGBA")
if merged_image is None:
merged_image = image.copy()
else:
# Объединяем изображения с учетом альфа-канала
merged_image = Image.alpha_composite(merged_image, image)
merged_indices.append(i)
if merged_image is not None:
# Преобразуем объединенное изображение в numpy array
merged_image_np = np.array(merged_image)
new_gallery_images = [
item for i, item in enumerate(gallery_images) if i not in merged_indices
]
new_name = labels_to_merge[0]
new_gallery_images.append((merged_image_np, new_name))
return new_gallery_images
else:
return gallery_images
# def set_client_for_session(request: gr.Request):
# x_ip_token = request.headers['x-ip-token']
# return Client("JeffreyXiang/TRELLIS", headers={"X-IP-Token": x_ip_token})
def set_hunyuan_client(request: gr.Request):
try:
x_ip_token = request.headers['x-ip-token']
return Client("tencent/Hunyuan3D-2", headers={"X-IP-Token": x_ip_token})
except:
return Client("tencent/Hunyuan3D-2")
def set_vFusion_client(request: gr.Request):
try:
x_ip_token = request.headers['x-ip-token']
return Client("facebook/VFusion3D", headers={"X-IP-Token": x_ip_token})
except:
return Client("facebook/VFusion3D")
# def generate_3d_model(client, segment_output, segment_name):
# for i, (image_path, label) in enumerate(segment_output):
# if label == segment_name:
# result = client.predict(
# image=handle_file(image_path),
# multiimages=[],
# seed=0,
# ss_guidance_strength=7.5,
# ss_sampling_steps=12,
# slat_guidance_strength=3,
# slat_sampling_steps=12,
# multiimage_algo="stochastic",
# api_name="/image_to_3d"
# )
# break
# print(result)
# return result["video"]
def generate_3d_model(client, segment_output, segment_name):
for i, (image_path, label) in enumerate(segment_output):
if label == segment_name:
result = client.predict(
caption="",
image=handle_file(image_path),
steps=50,
guidance_scale=5.5,
seed=1234,
octree_resolution="256",
check_box_rembg=True,
api_name="/shape_generation"
)
print(result)
return (result[0], result[0])
def generate_3d_model_texture(client, segment_output, segment_name):
for i, (image_path, label) in enumerate(segment_output):
if label == segment_name:
result = client.predict(
caption="",
image=handle_file(image_path),
steps=50,
guidance_scale=5.5,
seed=1234,
octree_resolution="256",
check_box_rembg=True,
api_name="/generation_all"
)
print(result)
return (result[1], result[1])
def generate_3d_model2(client, segment_output, segment_name):
for i, (image_path, label) in enumerate(segment_output):
if label == segment_name:
result = client.predict(
image=handle_file(image_path),
api_name="/step_1_generate_obj"
)
print(result)
return (result[0], result[0])
# def classify_segments(segments):
# # Предполагается, что segments - список изображений сегментов
# results = []
# for segment in segments:
# results.append(classification(segment))
# return results # Вернем список классификаций
# def upscale_segment(segment):
# upscaled = upscaling_client.image_to_image(segment)
# return upscaled
# def inpaint_image(image, mask, prompt):
# inpainted = inpainting_client.text_to_image(prompt, image=image, mask=mask)
# return inpainted
from gradio_litmodel3d import LitModel3D
with gr.Blocks() as demo:
hunyuan_client = gr.State()
vFusion_client = gr.State()
gr.Markdown("# Анализ и редактирование помещений")
with gr.Tab("Сканирование"):
with gr.Row():
with gr.Column(scale=5):
image_input = gr.Image()
segment_button = gr.Button("Сегментировать")
with gr.Column(scale=5):
segment_output = gr.Gallery()
merge_segments_input = gr.Textbox(label="Сегменты для объединения (через точку с запятой, например: \"wall_0; tv_0\")")
merge_segments_button = gr.Button("Соединить сегменты")
merge_segments_button.click(merge_segments_by_labels, inputs=[segment_output, merge_segments_input], outputs=segment_output)
with gr.Row():
with gr.Column(scale=5):
trellis_input = gr.Textbox(label="Имя сегмента для 3D")
hunyuan_button = gr.Button("Hunyuan3D-2")
hunyuan_button_texture = gr.Button("Hunyuan3D-2 (with texture)")
vFusion_button = gr.Button("VFusion3D")
with gr.Column(scale=5):
# trellis_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
# trellis_output2 = LitModel3D(
# clear_color=[0.1, 0.1, 0.1, 0], # can adjust background color for better contrast
# label="3D Model Visualization",
# scale=1.0,
# tonemapping="aces", # can use aces tonemapping for more realistic lighting
# exposure=1.0, # can adjust exposure to control brightness
# contrast=1.1, # can slightly increase contrast for better depth
# camera_position=(0, 0, 2), # will set initial camera position to center the model
# zoom_speed=0.5, # will adjust zoom speed for better control
# pan_speed=0.5, # will adjust pan speed for better control
# interactive=True # this allow users to interact with the model
# )
trellis_output = gr.Model3D(label="3D Model")
trellis_output2 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model Wireframe")
# trellis_button.click(generate_3d_model, inputs=[client, segment_output, trellis_input], outputs=trellis_output)
hunyuan_button.click(generate_3d_model, inputs=[hunyuan_client, segment_output, trellis_input], outputs=[trellis_output, trellis_output2])
hunyuan_button_texture.click(generate_3d_model_texture, inputs=[hunyuan_client, segment_output, trellis_input], outputs=[trellis_output, trellis_output2])
vFusion_button.click(generate_3d_model2, inputs=[vFusion_client, segment_output, trellis_input], outputs=[trellis_output, trellis_output2])
segment_button.click(segment_image, inputs=image_input, outputs=segment_output)
# segment_button.click(segment_full_image, inputs=image_input, outputs=segment_output)
# with gr.Tab("Редактирование"):
# segment_input = gr.Image()
# upscale_output = gr.Image()
# upscale_button = gr.Button("Upscale")
# upscale_button.click(upscale_segment, inputs=segment_input, outputs=upscale_output)
# mask_input = gr.Image()
# prompt_input = gr.Textbox()
# inpaint_output = gr.Image()
# inpaint_button = gr.Button("Inpaint")
# inpaint_button.click(inpaint_image, inputs=[segment_input, mask_input, prompt_input], outputs=inpaint_output)
# with gr.Tab("Создание 3D моделей"):
# segment_input_3d = gr.Image()
# model_output = gr.File()
# model_button = gr.Button("Создать 3D модель")
# model_button.click(generate_3d_model, inputs=segment_input_3d, outputs=model_output)
demo.load(set_hunyuan_client, None, hunyuan_client)
demo.load(set_vFusion_client, None, vFusion_client)
demo.launch(debug=True, show_error=True) |