Spaces:
Runtime error
Runtime error
| # -*- coding: utf-8 -*- | |
| """code-search.ipynb | |
| Automatically generated by Colaboratory. | |
| Original file is located at | |
| https://colab.research.google.com/drive/1-TlihNx5XCiVSxUHDF1oHFNcfpuy_k0N | |
| """ | |
| # Install Cohere for embeddings | |
| import cohere | |
| import numpy as np | |
| import pandas as pd | |
| import gradio as gr | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| from annoy import AnnoyIndex | |
| import warnings | |
| warnings.filterwarnings('ignore') | |
| pd.set_option('display.max_colwidth', None) | |
| data_df = pd.read_csv('functions_data.csv') | |
| #data_df.head() | |
| data_df['docstring'].fillna('not specified', inplace=True) | |
| # Paste your API key here. Remember to not share publicly | |
| api_key = $api_key | |
| # Create and retrieve a Cohere API key from dashboard.cohere.ai/welcome/register | |
| co = cohere.Client(api_key) | |
| search_index = AnnoyIndex(4096, 'angular') | |
| search_index.load('code.ann') # super fast, will just mmap the file | |
| def get_code(query): | |
| # Get the query's embedding | |
| query_embed = co.embed(texts=[query], | |
| model="large", | |
| truncate="LEFT").embeddings | |
| # Retrieve the nearest neighbors | |
| similar_item_ids = search_index.get_nns_by_vector(query_embed[0],3, | |
| include_distances=True) | |
| return data_df.iloc[similar_item_ids[0]]['function_body'] , data_df.iloc[similar_item_ids[0]]['file_path'] | |
| iface = gr.Interface(fn=get_code, inputs="text", outputs=[gr.Markdown(), gr.Textbox()]) | |
| iface.launch() | |