Spaces:
Running
on
Zero
Running
on
Zero
Upload 6 files
Browse files- controlnet_aux/anyline/__init__.py +118 -0
- controlnet_aux/teed/Fsmish.py +19 -0
- controlnet_aux/teed/LICENSE.txt +21 -0
- controlnet_aux/teed/Xsmish.py +41 -0
- controlnet_aux/teed/__init__.py +84 -0
- controlnet_aux/teed/ted.py +332 -0
controlnet_aux/anyline/__init__.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# code based in https://github.com/TheMistoAI/ComfyUI-Anyline/blob/main/anyline.py
|
2 |
+
import os
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from einops import rearrange
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
from PIL import Image
|
10 |
+
from skimage import morphology
|
11 |
+
|
12 |
+
from ..teed.ted import TED
|
13 |
+
from ..util import HWC3, resize_image, safe_step
|
14 |
+
|
15 |
+
|
16 |
+
class AnylineDetector:
|
17 |
+
def __init__(self, model):
|
18 |
+
self.model = model
|
19 |
+
|
20 |
+
@classmethod
|
21 |
+
def from_pretrained(cls, pretrained_model_or_path, filename=None, subfolder=None):
|
22 |
+
if os.path.isdir(pretrained_model_or_path):
|
23 |
+
model_path = os.path.join(pretrained_model_or_path, filename)
|
24 |
+
else:
|
25 |
+
model_path = hf_hub_download(
|
26 |
+
pretrained_model_or_path, filename, subfolder=subfolder
|
27 |
+
)
|
28 |
+
|
29 |
+
model = TED()
|
30 |
+
model.load_state_dict(torch.load(model_path, map_location="cpu"))
|
31 |
+
|
32 |
+
return cls(model)
|
33 |
+
|
34 |
+
def to(self, device):
|
35 |
+
self.model.to(device)
|
36 |
+
return self
|
37 |
+
|
38 |
+
def __call__(
|
39 |
+
self,
|
40 |
+
input_image,
|
41 |
+
detect_resolution=1280,
|
42 |
+
guassian_sigma=2.0,
|
43 |
+
intensity_threshold=3,
|
44 |
+
output_type="pil",
|
45 |
+
):
|
46 |
+
device = next(iter(self.model.parameters())).device
|
47 |
+
|
48 |
+
if not isinstance(input_image, np.ndarray):
|
49 |
+
input_image = np.array(input_image, dtype=np.uint8)
|
50 |
+
output_type = output_type or "pil"
|
51 |
+
else:
|
52 |
+
output_type = output_type or "np"
|
53 |
+
|
54 |
+
original_height, original_width, _ = input_image.shape
|
55 |
+
|
56 |
+
input_image = HWC3(input_image)
|
57 |
+
input_image = resize_image(input_image, detect_resolution)
|
58 |
+
|
59 |
+
assert input_image.ndim == 3
|
60 |
+
height, width, _ = input_image.shape
|
61 |
+
with torch.no_grad():
|
62 |
+
image_teed = torch.from_numpy(input_image.copy()).float().to(device)
|
63 |
+
image_teed = rearrange(image_teed, "h w c -> 1 c h w")
|
64 |
+
edges = self.model(image_teed)
|
65 |
+
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
|
66 |
+
edges = [
|
67 |
+
cv2.resize(e, (width, height), interpolation=cv2.INTER_LINEAR)
|
68 |
+
for e in edges
|
69 |
+
]
|
70 |
+
edges = np.stack(edges, axis=2)
|
71 |
+
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
|
72 |
+
edge = safe_step(edge, 2)
|
73 |
+
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
|
74 |
+
|
75 |
+
mteed_result = edge
|
76 |
+
mteed_result = HWC3(mteed_result)
|
77 |
+
|
78 |
+
x = input_image.astype(np.float32)
|
79 |
+
g = cv2.GaussianBlur(x, (0, 0), guassian_sigma)
|
80 |
+
intensity = np.min(g - x, axis=2).clip(0, 255)
|
81 |
+
intensity /= max(16, np.median(intensity[intensity > intensity_threshold]))
|
82 |
+
intensity *= 127
|
83 |
+
lineart_result = intensity.clip(0, 255).astype(np.uint8)
|
84 |
+
|
85 |
+
lineart_result = HWC3(lineart_result)
|
86 |
+
|
87 |
+
lineart_result = self.get_intensity_mask(
|
88 |
+
lineart_result, lower_bound=0, upper_bound=255
|
89 |
+
)
|
90 |
+
|
91 |
+
cleaned = morphology.remove_small_objects(
|
92 |
+
lineart_result.astype(bool), min_size=36, connectivity=1
|
93 |
+
)
|
94 |
+
lineart_result = lineart_result * cleaned
|
95 |
+
final_result = self.combine_layers(mteed_result, lineart_result)
|
96 |
+
|
97 |
+
final_result = cv2.resize(
|
98 |
+
final_result,
|
99 |
+
(original_width, original_height),
|
100 |
+
interpolation=cv2.INTER_LINEAR,
|
101 |
+
)
|
102 |
+
|
103 |
+
if output_type == "pil":
|
104 |
+
final_result = Image.fromarray(final_result)
|
105 |
+
|
106 |
+
return final_result
|
107 |
+
|
108 |
+
def get_intensity_mask(self, image_array, lower_bound, upper_bound):
|
109 |
+
mask = image_array[:, :, 0]
|
110 |
+
mask = np.where((mask >= lower_bound) & (mask <= upper_bound), mask, 0)
|
111 |
+
mask = np.expand_dims(mask, 2).repeat(3, axis=2)
|
112 |
+
return mask
|
113 |
+
|
114 |
+
def combine_layers(self, base_layer, top_layer):
|
115 |
+
mask = top_layer.astype(bool)
|
116 |
+
temp = 1 - (1 - top_layer) * (1 - base_layer)
|
117 |
+
result = base_layer * (~mask) + temp * mask
|
118 |
+
return result
|
controlnet_aux/teed/Fsmish.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Script based on:
|
3 |
+
Wang, Xueliang, Honge Ren, and Achuan Wang.
|
4 |
+
"Smish: A Novel Activation Function for Deep Learning Methods.
|
5 |
+
" Electronics 11.4 (2022): 540.
|
6 |
+
"""
|
7 |
+
|
8 |
+
# import pytorch
|
9 |
+
import torch
|
10 |
+
|
11 |
+
|
12 |
+
@torch.jit.script
|
13 |
+
def smish(input):
|
14 |
+
"""
|
15 |
+
Applies the mish function element-wise:
|
16 |
+
mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + exp(sigmoid(x))))
|
17 |
+
See additional documentation for mish class.
|
18 |
+
"""
|
19 |
+
return input * torch.tanh(torch.log(1 + torch.sigmoid(input)))
|
controlnet_aux/teed/LICENSE.txt
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2022 Xavier Soria Poma
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
controlnet_aux/teed/Xsmish.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Script based on:
|
3 |
+
Wang, Xueliang, Honge Ren, and Achuan Wang.
|
4 |
+
"Smish: A Novel Activation Function for Deep Learning Methods.
|
5 |
+
" Electronics 11.4 (2022): 540.
|
6 |
+
smish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + sigmoid(x)))
|
7 |
+
"""
|
8 |
+
|
9 |
+
# import pytorch
|
10 |
+
# import activation functions
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
from .Fsmish import smish
|
14 |
+
|
15 |
+
|
16 |
+
class Smish(nn.Module):
|
17 |
+
"""
|
18 |
+
Applies the mish function element-wise:
|
19 |
+
mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + exp(x)))
|
20 |
+
Shape:
|
21 |
+
- Input: (N, *) where * means, any number of additional
|
22 |
+
dimensions
|
23 |
+
- Output: (N, *), same shape as the input
|
24 |
+
Examples:
|
25 |
+
>>> m = Mish()
|
26 |
+
>>> input = torch.randn(2)
|
27 |
+
>>> output = m(input)
|
28 |
+
Reference: https://pytorch.org/docs/stable/generated/torch.nn.Mish.html
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(self):
|
32 |
+
"""
|
33 |
+
Init method.
|
34 |
+
"""
|
35 |
+
super().__init__()
|
36 |
+
|
37 |
+
def forward(self, input):
|
38 |
+
"""
|
39 |
+
Forward pass of the function.
|
40 |
+
"""
|
41 |
+
return smish(input)
|
controlnet_aux/teed/__init__.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from einops import rearrange
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
from ..util import HWC3, resize_image, safe_step
|
11 |
+
from .ted import TED
|
12 |
+
|
13 |
+
|
14 |
+
class TEEDdetector:
|
15 |
+
def __init__(self, model):
|
16 |
+
self.model = model
|
17 |
+
|
18 |
+
@classmethod
|
19 |
+
def from_pretrained(cls, pretrained_model_or_path, filename=None, subfolder=None):
|
20 |
+
if os.path.isdir(pretrained_model_or_path):
|
21 |
+
model_path = os.path.join(pretrained_model_or_path, filename)
|
22 |
+
else:
|
23 |
+
model_path = hf_hub_download(
|
24 |
+
pretrained_model_or_path, filename, subfolder=subfolder
|
25 |
+
)
|
26 |
+
|
27 |
+
model = TED()
|
28 |
+
model.load_state_dict(torch.load(model_path, map_location="cpu"))
|
29 |
+
|
30 |
+
return cls(model)
|
31 |
+
|
32 |
+
def to(self, device):
|
33 |
+
self.model.to(device)
|
34 |
+
return self
|
35 |
+
|
36 |
+
def __call__(
|
37 |
+
self,
|
38 |
+
input_image,
|
39 |
+
detect_resolution=512,
|
40 |
+
safe_steps=2,
|
41 |
+
output_type="pil",
|
42 |
+
):
|
43 |
+
device = next(iter(self.model.parameters())).device
|
44 |
+
if not isinstance(input_image, np.ndarray):
|
45 |
+
input_image = np.array(input_image, dtype=np.uint8)
|
46 |
+
output_type = output_type or "pil"
|
47 |
+
else:
|
48 |
+
output_type = output_type or "np"
|
49 |
+
|
50 |
+
original_height, original_width, _ = input_image.shape
|
51 |
+
|
52 |
+
input_image = HWC3(input_image)
|
53 |
+
input_image = resize_image(input_image, detect_resolution)
|
54 |
+
|
55 |
+
assert input_image.ndim == 3
|
56 |
+
height, width, _ = input_image.shape
|
57 |
+
with torch.no_grad():
|
58 |
+
image_teed = torch.from_numpy(input_image.copy()).float().to(device)
|
59 |
+
image_teed = rearrange(image_teed, "h w c -> 1 c h w")
|
60 |
+
edges = self.model(image_teed)
|
61 |
+
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
|
62 |
+
edges = [
|
63 |
+
cv2.resize(e, (width, height), interpolation=cv2.INTER_LINEAR)
|
64 |
+
for e in edges
|
65 |
+
]
|
66 |
+
edges = np.stack(edges, axis=2)
|
67 |
+
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
|
68 |
+
if safe_steps != 0:
|
69 |
+
edge = safe_step(edge, safe_steps)
|
70 |
+
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
|
71 |
+
|
72 |
+
detected_map = edge
|
73 |
+
detected_map = HWC3(detected_map)
|
74 |
+
|
75 |
+
detected_map = cv2.resize(
|
76 |
+
detected_map,
|
77 |
+
(original_width, original_height),
|
78 |
+
interpolation=cv2.INTER_LINEAR,
|
79 |
+
)
|
80 |
+
|
81 |
+
if output_type == "pil":
|
82 |
+
detected_map = Image.fromarray(detected_map)
|
83 |
+
|
84 |
+
return detected_map
|
controlnet_aux/teed/ted.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Original from: https://github.com/xavysp/TEED
|
2 |
+
# TEED: is a Tiny but Efficient Edge Detection, it comes from the LDC-B3
|
3 |
+
# with a Slightly modification
|
4 |
+
# LDC parameters:
|
5 |
+
# 155665
|
6 |
+
# TED > 58K
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
from .Fsmish import smish as Fsmish
|
13 |
+
from .Xsmish import Smish
|
14 |
+
|
15 |
+
|
16 |
+
def weight_init(m):
|
17 |
+
if isinstance(m, (nn.Conv2d,)):
|
18 |
+
torch.nn.init.xavier_normal_(m.weight, gain=1.0)
|
19 |
+
|
20 |
+
if m.bias is not None:
|
21 |
+
torch.nn.init.zeros_(m.bias)
|
22 |
+
|
23 |
+
# for fusion layer
|
24 |
+
if isinstance(m, (nn.ConvTranspose2d,)):
|
25 |
+
torch.nn.init.xavier_normal_(m.weight, gain=1.0)
|
26 |
+
if m.bias is not None:
|
27 |
+
torch.nn.init.zeros_(m.bias)
|
28 |
+
|
29 |
+
|
30 |
+
class CoFusion(nn.Module):
|
31 |
+
# from LDC
|
32 |
+
|
33 |
+
def __init__(self, in_ch, out_ch):
|
34 |
+
super(CoFusion, self).__init__()
|
35 |
+
self.conv1 = nn.Conv2d(
|
36 |
+
in_ch, 32, kernel_size=3, stride=1, padding=1
|
37 |
+
) # before 64
|
38 |
+
self.conv3 = nn.Conv2d(
|
39 |
+
32, out_ch, kernel_size=3, stride=1, padding=1
|
40 |
+
) # before 64 instead of 32
|
41 |
+
self.relu = nn.ReLU()
|
42 |
+
self.norm_layer1 = nn.GroupNorm(4, 32) # before 64
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
# fusecat = torch.cat(x, dim=1)
|
46 |
+
attn = self.relu(self.norm_layer1(self.conv1(x)))
|
47 |
+
attn = F.softmax(self.conv3(attn), dim=1)
|
48 |
+
return ((x * attn).sum(1)).unsqueeze(1)
|
49 |
+
|
50 |
+
|
51 |
+
class CoFusion2(nn.Module):
|
52 |
+
# TEDv14-3
|
53 |
+
def __init__(self, in_ch, out_ch):
|
54 |
+
super(CoFusion2, self).__init__()
|
55 |
+
self.conv1 = nn.Conv2d(
|
56 |
+
in_ch, 32, kernel_size=3, stride=1, padding=1
|
57 |
+
) # before 64
|
58 |
+
# self.conv2 = nn.Conv2d(32, 32, kernel_size=3,
|
59 |
+
# stride=1, padding=1)# before 64
|
60 |
+
self.conv3 = nn.Conv2d(
|
61 |
+
32, out_ch, kernel_size=3, stride=1, padding=1
|
62 |
+
) # before 64 instead of 32
|
63 |
+
self.smish = Smish() # nn.ReLU(inplace=True)
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
# fusecat = torch.cat(x, dim=1)
|
67 |
+
attn = self.conv1(self.smish(x))
|
68 |
+
attn = self.conv3(self.smish(attn)) # before , )dim=1)
|
69 |
+
|
70 |
+
# return ((fusecat * attn).sum(1)).unsqueeze(1)
|
71 |
+
return ((x * attn).sum(1)).unsqueeze(1)
|
72 |
+
|
73 |
+
|
74 |
+
class DoubleFusion(nn.Module):
|
75 |
+
# TED fusion before the final edge map prediction
|
76 |
+
def __init__(self, in_ch, out_ch):
|
77 |
+
super(DoubleFusion, self).__init__()
|
78 |
+
self.DWconv1 = nn.Conv2d(
|
79 |
+
in_ch, in_ch * 8, kernel_size=3, stride=1, padding=1, groups=in_ch
|
80 |
+
) # before 64
|
81 |
+
self.PSconv1 = nn.PixelShuffle(1)
|
82 |
+
|
83 |
+
self.DWconv2 = nn.Conv2d(
|
84 |
+
24, 24 * 1, kernel_size=3, stride=1, padding=1, groups=24
|
85 |
+
) # before 64 instead of 32
|
86 |
+
|
87 |
+
self.AF = Smish() # XAF() #nn.Tanh()# XAF() # # Smish()#
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
# fusecat = torch.cat(x, dim=1)
|
91 |
+
attn = self.PSconv1(
|
92 |
+
self.DWconv1(self.AF(x))
|
93 |
+
) # #TEED best res TEDv14 [8, 32, 352, 352]
|
94 |
+
|
95 |
+
attn2 = self.PSconv1(
|
96 |
+
self.DWconv2(self.AF(attn))
|
97 |
+
) # #TEED best res TEDv14[8, 3, 352, 352]
|
98 |
+
|
99 |
+
return Fsmish(((attn2 + attn).sum(1)).unsqueeze(1)) # TED best res
|
100 |
+
|
101 |
+
|
102 |
+
class _DenseLayer(nn.Sequential):
|
103 |
+
def __init__(self, input_features, out_features):
|
104 |
+
super(_DenseLayer, self).__init__()
|
105 |
+
|
106 |
+
(
|
107 |
+
self.add_module(
|
108 |
+
"conv1",
|
109 |
+
nn.Conv2d(
|
110 |
+
input_features,
|
111 |
+
out_features,
|
112 |
+
kernel_size=3,
|
113 |
+
stride=1,
|
114 |
+
padding=2,
|
115 |
+
bias=True,
|
116 |
+
),
|
117 |
+
),
|
118 |
+
)
|
119 |
+
(self.add_module("smish1", Smish()),)
|
120 |
+
self.add_module(
|
121 |
+
"conv2",
|
122 |
+
nn.Conv2d(out_features, out_features, kernel_size=3, stride=1, bias=True),
|
123 |
+
)
|
124 |
+
|
125 |
+
def forward(self, x):
|
126 |
+
x1, x2 = x
|
127 |
+
|
128 |
+
new_features = super(_DenseLayer, self).forward(Fsmish(x1)) # F.relu()
|
129 |
+
|
130 |
+
return 0.5 * (new_features + x2), x2
|
131 |
+
|
132 |
+
|
133 |
+
class _DenseBlock(nn.Sequential):
|
134 |
+
def __init__(self, num_layers, input_features, out_features):
|
135 |
+
super(_DenseBlock, self).__init__()
|
136 |
+
for i in range(num_layers):
|
137 |
+
layer = _DenseLayer(input_features, out_features)
|
138 |
+
self.add_module("denselayer%d" % (i + 1), layer)
|
139 |
+
input_features = out_features
|
140 |
+
|
141 |
+
|
142 |
+
class UpConvBlock(nn.Module):
|
143 |
+
def __init__(self, in_features, up_scale):
|
144 |
+
super(UpConvBlock, self).__init__()
|
145 |
+
self.up_factor = 2
|
146 |
+
self.constant_features = 16
|
147 |
+
|
148 |
+
layers = self.make_deconv_layers(in_features, up_scale)
|
149 |
+
assert layers is not None, layers
|
150 |
+
self.features = nn.Sequential(*layers)
|
151 |
+
|
152 |
+
def make_deconv_layers(self, in_features, up_scale):
|
153 |
+
layers = []
|
154 |
+
all_pads = [0, 0, 1, 3, 7]
|
155 |
+
for i in range(up_scale):
|
156 |
+
kernel_size = 2**up_scale
|
157 |
+
pad = all_pads[up_scale] # kernel_size-1
|
158 |
+
out_features = self.compute_out_features(i, up_scale)
|
159 |
+
layers.append(nn.Conv2d(in_features, out_features, 1))
|
160 |
+
layers.append(Smish())
|
161 |
+
layers.append(
|
162 |
+
nn.ConvTranspose2d(
|
163 |
+
out_features, out_features, kernel_size, stride=2, padding=pad
|
164 |
+
)
|
165 |
+
)
|
166 |
+
in_features = out_features
|
167 |
+
return layers
|
168 |
+
|
169 |
+
def compute_out_features(self, idx, up_scale):
|
170 |
+
return 1 if idx == up_scale - 1 else self.constant_features
|
171 |
+
|
172 |
+
def forward(self, x):
|
173 |
+
return self.features(x)
|
174 |
+
|
175 |
+
|
176 |
+
class SingleConvBlock(nn.Module):
|
177 |
+
def __init__(self, in_features, out_features, stride, use_ac=False):
|
178 |
+
super(SingleConvBlock, self).__init__()
|
179 |
+
# self.use_bn = use_bs
|
180 |
+
self.use_ac = use_ac
|
181 |
+
self.conv = nn.Conv2d(in_features, out_features, 1, stride=stride, bias=True)
|
182 |
+
if self.use_ac:
|
183 |
+
self.smish = Smish()
|
184 |
+
|
185 |
+
def forward(self, x):
|
186 |
+
x = self.conv(x)
|
187 |
+
if self.use_ac:
|
188 |
+
return self.smish(x)
|
189 |
+
else:
|
190 |
+
return x
|
191 |
+
|
192 |
+
|
193 |
+
class DoubleConvBlock(nn.Module):
|
194 |
+
def __init__(
|
195 |
+
self, in_features, mid_features, out_features=None, stride=1, use_act=True
|
196 |
+
):
|
197 |
+
super(DoubleConvBlock, self).__init__()
|
198 |
+
|
199 |
+
self.use_act = use_act
|
200 |
+
if out_features is None:
|
201 |
+
out_features = mid_features
|
202 |
+
self.conv1 = nn.Conv2d(in_features, mid_features, 3, padding=1, stride=stride)
|
203 |
+
self.conv2 = nn.Conv2d(mid_features, out_features, 3, padding=1)
|
204 |
+
self.smish = Smish() # nn.ReLU(inplace=True)
|
205 |
+
|
206 |
+
def forward(self, x):
|
207 |
+
x = self.conv1(x)
|
208 |
+
x = self.smish(x)
|
209 |
+
x = self.conv2(x)
|
210 |
+
if self.use_act:
|
211 |
+
x = self.smish(x)
|
212 |
+
return x
|
213 |
+
|
214 |
+
|
215 |
+
class TED(nn.Module):
|
216 |
+
"""Definition of Tiny and Efficient Edge Detector
|
217 |
+
model
|
218 |
+
"""
|
219 |
+
|
220 |
+
def __init__(self):
|
221 |
+
super(TED, self).__init__()
|
222 |
+
self.block_1 = DoubleConvBlock(
|
223 |
+
3,
|
224 |
+
16,
|
225 |
+
16,
|
226 |
+
stride=2,
|
227 |
+
)
|
228 |
+
self.block_2 = DoubleConvBlock(16, 32, use_act=False)
|
229 |
+
self.dblock_3 = _DenseBlock(1, 32, 48) # [32,48,100,100] before (2, 32, 64)
|
230 |
+
|
231 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
232 |
+
|
233 |
+
# skip1 connection, see fig. 2
|
234 |
+
self.side_1 = SingleConvBlock(16, 32, 2)
|
235 |
+
|
236 |
+
# skip2 connection, see fig. 2
|
237 |
+
self.pre_dense_3 = SingleConvBlock(32, 48, 1) # before (32, 64, 1)
|
238 |
+
|
239 |
+
# USNet
|
240 |
+
self.up_block_1 = UpConvBlock(16, 1)
|
241 |
+
self.up_block_2 = UpConvBlock(32, 1)
|
242 |
+
self.up_block_3 = UpConvBlock(48, 2) # (32, 64, 1)
|
243 |
+
|
244 |
+
self.block_cat = DoubleFusion(3, 3) # TEED: DoubleFusion
|
245 |
+
|
246 |
+
self.apply(weight_init)
|
247 |
+
|
248 |
+
def slice(self, tensor, slice_shape):
|
249 |
+
t_shape = tensor.shape
|
250 |
+
img_h, img_w = slice_shape
|
251 |
+
if img_w != t_shape[-1] or img_h != t_shape[2]:
|
252 |
+
new_tensor = F.interpolate(
|
253 |
+
tensor, size=(img_h, img_w), mode="bicubic", align_corners=False
|
254 |
+
)
|
255 |
+
|
256 |
+
else:
|
257 |
+
new_tensor = tensor
|
258 |
+
# tensor[..., :height, :width]
|
259 |
+
return new_tensor
|
260 |
+
|
261 |
+
def resize_input(self, tensor):
|
262 |
+
t_shape = tensor.shape
|
263 |
+
if t_shape[2] % 8 != 0 or t_shape[3] % 8 != 0:
|
264 |
+
img_w = ((t_shape[3] // 8) + 1) * 8
|
265 |
+
img_h = ((t_shape[2] // 8) + 1) * 8
|
266 |
+
new_tensor = F.interpolate(
|
267 |
+
tensor, size=(img_h, img_w), mode="bicubic", align_corners=False
|
268 |
+
)
|
269 |
+
else:
|
270 |
+
new_tensor = tensor
|
271 |
+
return new_tensor
|
272 |
+
|
273 |
+
def crop_bdcn(data1, h, w, crop_h, crop_w):
|
274 |
+
# Based on BDCN Implementation @ https://github.com/pkuCactus/BDCN
|
275 |
+
_, _, h1, w1 = data1.size()
|
276 |
+
assert h <= h1 and w <= w1
|
277 |
+
data = data1[:, :, crop_h : crop_h + h, crop_w : crop_w + w]
|
278 |
+
return data
|
279 |
+
|
280 |
+
def forward(self, x, single_test=False):
|
281 |
+
assert x.ndim == 4, x.shape
|
282 |
+
# supose the image size is 352x352
|
283 |
+
|
284 |
+
# Block 1
|
285 |
+
block_1 = self.block_1(x) # [8,16,176,176]
|
286 |
+
block_1_side = self.side_1(block_1) # 16 [8,32,88,88]
|
287 |
+
|
288 |
+
# Block 2
|
289 |
+
block_2 = self.block_2(block_1) # 32 # [8,32,176,176]
|
290 |
+
block_2_down = self.maxpool(block_2) # [8,32,88,88]
|
291 |
+
block_2_add = block_2_down + block_1_side # [8,32,88,88]
|
292 |
+
|
293 |
+
# Block 3
|
294 |
+
block_3_pre_dense = self.pre_dense_3(
|
295 |
+
block_2_down
|
296 |
+
) # [8,64,88,88] block 3 L connection
|
297 |
+
block_3, _ = self.dblock_3([block_2_add, block_3_pre_dense]) # [8,64,88,88]
|
298 |
+
|
299 |
+
# upsampling blocks
|
300 |
+
out_1 = self.up_block_1(block_1)
|
301 |
+
out_2 = self.up_block_2(block_2)
|
302 |
+
out_3 = self.up_block_3(block_3)
|
303 |
+
|
304 |
+
results = [out_1, out_2, out_3]
|
305 |
+
|
306 |
+
# concatenate multiscale outputs
|
307 |
+
block_cat = torch.cat(results, dim=1) # Bx6xHxW
|
308 |
+
block_cat = self.block_cat(block_cat) # Bx1xHxW DoubleFusion
|
309 |
+
|
310 |
+
results.append(block_cat)
|
311 |
+
return results
|
312 |
+
|
313 |
+
|
314 |
+
if __name__ == "__main__":
|
315 |
+
batch_size = 8
|
316 |
+
img_height = 352
|
317 |
+
img_width = 352
|
318 |
+
|
319 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
320 |
+
device = "cpu"
|
321 |
+
input = torch.rand(batch_size, 3, img_height, img_width).to(device)
|
322 |
+
# target = torch.rand(batch_size, 1, img_height, img_width).to(device)
|
323 |
+
print(f"input shape: {input.shape}")
|
324 |
+
model = TED().to(device)
|
325 |
+
output = model(input)
|
326 |
+
print(f"output shapes: {[t.shape for t in output]}")
|
327 |
+
|
328 |
+
# for i in range(20000):
|
329 |
+
# print(i)
|
330 |
+
# output = model(input)
|
331 |
+
# loss = nn.MSELoss()(output[-1], target)
|
332 |
+
# loss.backward()
|