import os import threading import time import requests import streamlit as st import uvicorn from fastapi import FastAPI from utils import process_news import asyncio import sys if sys.platform == "win32": asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy()) import spacy try: spacy.load("en_core_web_sm") except OSError: import os os.system("python -m spacy download en_core_web_sm") # FastAPI app setup api = FastAPI(title="News Summarization & TTS API") @api.get("/") def read_root(): return {"message": "Welcome to the News Summarization & TTS API"} @api.get("/news/{company_name}") def get_news(company_name: str): return process_news(company_name) # # Function to run FastAPI in a separate thread # def run_fastapi(): # uvicorn.run(api, host="0.0.0.0", port=8000) # # Start FastAPI in a separate thread # threading.Thread(target=run_fastapi, daemon=True).start() # # Streamlit app setup API_URL = "http://127.0.0.1:8000" # Since FastAPI runs in the same Space st.title("News Summarization and Hindi TTS Application") company = st.text_input("Enter Company Name", "") if st.button("Fetch News"): if company.strip() == "": st.warning("Please enter a valid company name.") else: with st.spinner("Fetching and processing news..."): time.sleep(2) # Give FastAPI some time to start try: response = requests.get(f"{API_URL}/news/{company}") if response.status_code == 200: data = response.json() st.header(f"News for {data['company']}") for article in data["articles"]: st.subheader(article.get("title", "No Title")) st.markdown(f"**URL:** [Read More]({article.get('url', '#')})") st.markdown(f"**Date:** {article.get('date', 'N/A')}") st.markdown(f"**Sentiment:** {article.get('sentiment', 'Neutral')} (Score: {article.get('score', 0):.2f})") st.markdown(f"**Excerpt:** {article.get('content','')[:300]}...") st.markdown("---") st.subheader("Comparative Sentiment Analysis") comp_sent = data.get("comparative_sentiment", {}) st.write({k: comp_sent[k] for k in ["Positive", "Negative", "Neutral"]}) if "graph" in comp_sent and os.path.exists(comp_sent["graph"]): st.image(comp_sent["graph"], caption="Sentiment Analysis Graph") st.subheader("Final Combined Summary") st.write(data.get("final_summary", "No summary available.")) st.subheader("Hindi Summary") st.write(data.get("hindi_summary", "")) st.subheader("Hindi Summary Audio") audio_path = data.get("tts_audio", None) if audio_path and os.path.exists(audio_path): with open(audio_path, "rb") as audio_file: st.audio(audio_file.read(), format='audio/mp3') else: st.error("Audio file not found or TTS generation failed.") else: st.error("Failed to fetch news from the API. Please try again.") except requests.exceptions.ConnectionError: st.error("API is not running yet. Please wait a moment and try again.")