Spaces:
Sleeping
Sleeping
import os | |
import threading | |
import time | |
import requests | |
import streamlit as st | |
import uvicorn | |
from fastapi import FastAPI | |
from utils import process_news | |
import asyncio | |
import sys | |
if sys.platform == "win32": | |
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy()) | |
import spacy | |
try: | |
spacy.load("en_core_web_sm") | |
except OSError: | |
import os | |
os.system("python -m spacy download en_core_web_sm") | |
# FastAPI app setup | |
api = FastAPI(title="News Summarization & TTS API") | |
def read_root(): | |
return {"message": "Welcome to the News Summarization & TTS API"} | |
def get_news(company_name: str): | |
return process_news(company_name) | |
# # Function to run FastAPI in a separate thread | |
# def run_fastapi(): | |
# uvicorn.run(api, host="0.0.0.0", port=8000) | |
# # Start FastAPI in a separate thread | |
# threading.Thread(target=run_fastapi, daemon=True).start() | |
# # Streamlit app setup | |
API_URL = "http://127.0.0.1:8000" # Since FastAPI runs in the same Space | |
st.title("News Summarization and Hindi TTS Application") | |
company = st.text_input("Enter Company Name", "") | |
if st.button("Fetch News"): | |
if company.strip() == "": | |
st.warning("Please enter a valid company name.") | |
else: | |
with st.spinner("Fetching and processing news..."): | |
time.sleep(2) # Give FastAPI some time to start | |
try: | |
response = requests.get(f"{API_URL}/news/{company}") | |
if response.status_code == 200: | |
data = response.json() | |
st.header(f"News for {data['company']}") | |
for article in data["articles"]: | |
st.subheader(article.get("title", "No Title")) | |
st.markdown(f"**URL:** [Read More]({article.get('url', '#')})") | |
st.markdown(f"**Date:** {article.get('date', 'N/A')}") | |
st.markdown(f"**Sentiment:** {article.get('sentiment', 'Neutral')} (Score: {article.get('score', 0):.2f})") | |
st.markdown(f"**Excerpt:** {article.get('content','')[:300]}...") | |
st.markdown("---") | |
st.subheader("Comparative Sentiment Analysis") | |
comp_sent = data.get("comparative_sentiment", {}) | |
st.write({k: comp_sent[k] for k in ["Positive", "Negative", "Neutral"]}) | |
if "graph" in comp_sent and os.path.exists(comp_sent["graph"]): | |
st.image(comp_sent["graph"], caption="Sentiment Analysis Graph") | |
st.subheader("Final Combined Summary") | |
st.write(data.get("final_summary", "No summary available.")) | |
st.subheader("Hindi Summary") | |
st.write(data.get("hindi_summary", "")) | |
st.subheader("Hindi Summary Audio") | |
audio_path = data.get("tts_audio", None) | |
if audio_path and os.path.exists(audio_path): | |
with open(audio_path, "rb") as audio_file: | |
st.audio(audio_file.read(), format='audio/mp3') | |
else: | |
st.error("Audio file not found or TTS generation failed.") | |
else: | |
st.error("Failed to fetch news from the API. Please try again.") | |
except requests.exceptions.ConnectionError: | |
st.error("API is not running yet. Please wait a moment and try again.") | |