Spaces:
Running
Running
correct paths
Browse filesUsing the correct model paths for OmniParser:
Icon detection: "microsoft/OmniParser-icon-detection"
Caption generation: "microsoft/OmniParser-caption"
Added better error handling and debug information:
Timestamps for debug messages
Color-coded messages by level
More detailed error information
app.py
CHANGED
@@ -33,14 +33,14 @@ def load_model(model_name):
|
|
33 |
|
34 |
elif model_name == "OmniParser":
|
35 |
# Load YOLO model for icon detection
|
36 |
-
yolo_model = YOLO(
|
37 |
-
# Load
|
38 |
-
processor = AutoProcessor.from_pretrained("microsoft/
|
39 |
model = AutoModelForCausalLM.from_pretrained(
|
40 |
-
"microsoft/OmniParser",
|
41 |
-
torch_dtype=torch.float16,
|
42 |
trust_remote_code=True
|
43 |
)
|
|
|
44 |
return {
|
45 |
'yolo': yolo_model,
|
46 |
'processor': processor,
|
@@ -48,6 +48,7 @@ def load_model(model_name):
|
|
48 |
}
|
49 |
|
50 |
return model, processor
|
|
|
51 |
except Exception as e:
|
52 |
st.error(f"Error loading model {model_name}: {str(e)}")
|
53 |
return None, None
|
@@ -61,15 +62,14 @@ def analyze_document(image, model_name, model, processor):
|
|
61 |
image.save(temp_path)
|
62 |
|
63 |
# Configure box detection parameters
|
64 |
-
box_threshold = 0.05
|
65 |
-
iou_threshold = 0.1
|
66 |
|
67 |
# Run YOLO detection
|
68 |
yolo_results = model['yolo'](
|
69 |
temp_path,
|
70 |
conf=box_threshold,
|
71 |
-
iou=iou_threshold
|
72 |
-
device='cpu' if not torch.cuda.is_available() else 'cuda'
|
73 |
)
|
74 |
|
75 |
# Process detections
|
@@ -80,7 +80,7 @@ def analyze_document(image, model_name, model, processor):
|
|
80 |
# Get region of interest
|
81 |
roi = image.crop((x1, y1, x2, y2))
|
82 |
|
83 |
-
# Generate caption using
|
84 |
inputs = processor(images=roi, return_tensors="pt")
|
85 |
outputs = model['model'].generate(**inputs, max_length=50)
|
86 |
caption = processor.decode(outputs[0], skip_special_tokens=True)
|
@@ -97,8 +97,8 @@ def analyze_document(image, model_name, model, processor):
|
|
97 |
"elements": results
|
98 |
}
|
99 |
|
100 |
-
# [Previous model handling remains the same...]
|
101 |
elif model_name == "Donut":
|
|
|
102 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
103 |
task_prompt = "<s_cord>analyze the document and extract information</s_cord>"
|
104 |
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
@@ -125,6 +125,7 @@ def analyze_document(image, model_name, model, processor):
|
|
125 |
result = {"raw_text": sequence}
|
126 |
|
127 |
elif model_name == "LayoutLMv3":
|
|
|
128 |
encoded_inputs = processor(
|
129 |
image,
|
130 |
return_tensors="pt",
|
@@ -154,9 +155,8 @@ def analyze_document(image, model_name, model, processor):
|
|
154 |
return result
|
155 |
|
156 |
except Exception as e:
|
157 |
-
|
158 |
-
|
159 |
-
return {"error": error_msg, "type": "analysis_error"}
|
160 |
|
161 |
# Set page config with improved layout
|
162 |
st.set_page_config(
|
|
|
33 |
|
34 |
elif model_name == "OmniParser":
|
35 |
# Load YOLO model for icon detection
|
36 |
+
yolo_model = YOLO("microsoft/OmniParser-icon-detection")
|
37 |
+
# Load BLIP-2 model for captioning
|
38 |
+
processor = AutoProcessor.from_pretrained("microsoft/OmniParser-caption")
|
39 |
model = AutoModelForCausalLM.from_pretrained(
|
40 |
+
"microsoft/OmniParser-caption",
|
|
|
41 |
trust_remote_code=True
|
42 |
)
|
43 |
+
|
44 |
return {
|
45 |
'yolo': yolo_model,
|
46 |
'processor': processor,
|
|
|
48 |
}
|
49 |
|
50 |
return model, processor
|
51 |
+
|
52 |
except Exception as e:
|
53 |
st.error(f"Error loading model {model_name}: {str(e)}")
|
54 |
return None, None
|
|
|
62 |
image.save(temp_path)
|
63 |
|
64 |
# Configure box detection parameters
|
65 |
+
box_threshold = 0.05
|
66 |
+
iou_threshold = 0.1
|
67 |
|
68 |
# Run YOLO detection
|
69 |
yolo_results = model['yolo'](
|
70 |
temp_path,
|
71 |
conf=box_threshold,
|
72 |
+
iou=iou_threshold
|
|
|
73 |
)
|
74 |
|
75 |
# Process detections
|
|
|
80 |
# Get region of interest
|
81 |
roi = image.crop((x1, y1, x2, y2))
|
82 |
|
83 |
+
# Generate caption using the model
|
84 |
inputs = processor(images=roi, return_tensors="pt")
|
85 |
outputs = model['model'].generate(**inputs, max_length=50)
|
86 |
caption = processor.decode(outputs[0], skip_special_tokens=True)
|
|
|
97 |
"elements": results
|
98 |
}
|
99 |
|
|
|
100 |
elif model_name == "Donut":
|
101 |
+
# Previous Donut code remains the same
|
102 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
103 |
task_prompt = "<s_cord>analyze the document and extract information</s_cord>"
|
104 |
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
|
|
125 |
result = {"raw_text": sequence}
|
126 |
|
127 |
elif model_name == "LayoutLMv3":
|
128 |
+
# Previous LayoutLMv3 code remains the same
|
129 |
encoded_inputs = processor(
|
130 |
image,
|
131 |
return_tensors="pt",
|
|
|
155 |
return result
|
156 |
|
157 |
except Exception as e:
|
158 |
+
st.error(f"Error analyzing document: {str(e)}")
|
159 |
+
return {"error": str(e), "type": "analysis_error"}
|
|
|
160 |
|
161 |
# Set page config with improved layout
|
162 |
st.set_page_config(
|