Spaces:
Running
Running
import streamlit as st | |
from PIL import Image | |
import torch | |
from transformers import ( | |
DonutProcessor, | |
VisionEncoderDecoderModel, | |
LayoutLMv3Processor, | |
LayoutLMv3ForSequenceClassification, | |
BrosProcessor, | |
BrosForTokenClassification, | |
LlavaProcessor, | |
LlavaForConditionalGeneration | |
) | |
def load_model(model_name): | |
"""Load the selected model and processor""" | |
if model_name == "Donut": | |
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base") | |
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base") | |
elif model_name == "LayoutLMv3": | |
processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base") | |
model = LayoutLMv3ForSequenceClassification.from_pretrained("microsoft/layoutlmv3-base") | |
elif model_name == "BROS": | |
processor = BrosProcessor.from_pretrained("microsoft/bros-base") | |
model = BrosForTokenClassification.from_pretrained("microsoft/bros-base") | |
elif model_name == "LLaVA-1.5": | |
processor = LlavaProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf") | |
model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf") | |
return model, processor | |
def analyze_document(image, model_name, model, processor): | |
"""Analyze document using selected model""" | |
try: | |
# Process image according to model requirements | |
if model_name == "Donut": | |
inputs = processor(image, return_tensors="pt") | |
outputs = model.generate(**inputs) | |
result = processor.decode(outputs[0], skip_special_tokens=True) | |
elif model_name == "LayoutLMv3": | |
inputs = processor(image, return_tensors="pt") | |
outputs = model(**inputs) | |
result = outputs.logits | |
# Add similar processing for other models | |
return result | |
except Exception as e: | |
st.error(f"Error analyzing document: {str(e)}") | |
return None | |
# Set page config | |
st.set_page_config(page_title="Document Analysis Comparison", layout="wide") | |
# Title and description | |
st.title("Document Understanding Model Comparison") | |
st.markdown(""" | |
Compare different models for document analysis and understanding. | |
Upload an image and select a model to analyze it. | |
""") | |
# Create two columns for layout | |
col1, col2 = st.columns([1, 1]) | |
with col1: | |
# File uploader | |
uploaded_file = st.file_uploader("Choose a document image", type=['png', 'jpg', 'jpeg', 'pdf']) | |
if uploaded_file is not None: | |
# Display uploaded image | |
image = Image.open(uploaded_file) | |
st.image(image, caption='Uploaded Document', use_column_width=True) | |
with col2: | |
# Model selection | |
model_info = { | |
"Donut": { | |
"description": "Best for structured OCR and document format understanding", | |
"memory": "6-8GB", | |
"strengths": ["Structured OCR", "Memory efficient", "Good with fixed formats"] | |
}, | |
"LayoutLMv3": { | |
"description": "Strong layout understanding with reasoning capabilities", | |
"memory": "12-15GB", | |
"strengths": ["Layout understanding", "Reasoning", "Pre-trained knowledge"] | |
}, | |
"BROS": { | |
"description": "Memory efficient with fast inference", | |
"memory": "4-6GB", | |
"strengths": ["Fast inference", "Memory efficient", "Easy fine-tuning"] | |
}, | |
"LLaVA-1.5": { | |
"description": "Comprehensive OCR with strong reasoning", | |
"memory": "25-40GB", | |
"strengths": ["Strong reasoning", "Zero-shot capable", "Visual understanding"] | |
} | |
} | |
selected_model = st.selectbox( | |
"Select Model", | |
list(model_info.keys()) | |
) | |
# Display model information | |
st.write("### Model Details") | |
st.write(f"**Description:** {model_info[selected_model]['description']}") | |
st.write(f"**Memory Required:** {model_info[selected_model]['memory']}") | |
st.write("**Strengths:**") | |
for strength in model_info[selected_model]['strengths']: | |
st.write(f"- {strength}") | |
# Analysis section | |
if uploaded_file is not None and selected_model: | |
if st.button("Analyze Document"): | |
with st.spinner('Loading model and analyzing document...'): | |
try: | |
# Load model and processor | |
model, processor = load_model(selected_model) | |
# Analyze document | |
results = analyze_document(image, selected_model, model, processor) | |
# Display results | |
st.write("### Analysis Results") | |
st.json(results) | |
except Exception as e: | |
st.error(f"Error during analysis: {str(e)}") | |
# Add information about usage and limitations | |
st.markdown(""" | |
--- | |
### Notes: | |
- Different models may perform better for different types of documents | |
- Processing time and memory requirements vary by model | |
- Results may vary based on document quality and format | |
""") | |
# Add a footer with version information | |
st.markdown("---") | |
st.markdown("v1.0 - Created with Streamlit") |