Spaces:
Running
Running
File size: 11,083 Bytes
4045262 db7e40d fc4abc8 db7e40d 4045262 fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import streamlit as st
from PIL import Image
import torch
import json
from transformers import (
DonutProcessor,
VisionEncoderDecoderModel,
LayoutLMv3Processor,
LayoutLMv3ForSequenceClassification,
BrosProcessor,
BrosForTokenClassification,
LlavaProcessor,
LlavaForConditionalGeneration
)
# Cache the model loading to improve performance
@st.cache_resource
def load_model(model_name):
"""Load the selected model and processor"""
try:
if model_name == "Donut":
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base")
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base")
# Configure Donut specific parameters
model.config.decoder_start_token_id = processor.tokenizer.bos_token_id
model.config.pad_token_id = processor.tokenizer.pad_token_id
model.config.vocab_size = len(processor.tokenizer)
elif model_name == "LayoutLMv3":
processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
model = LayoutLMv3ForSequenceClassification.from_pretrained("microsoft/layoutlmv3-base")
elif model_name == "BROS":
processor = BrosProcessor.from_pretrained("microsoft/bros-base")
model = BrosForTokenClassification.from_pretrained("microsoft/bros-base")
elif model_name == "LLaVA-1.5":
processor = LlavaProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf")
return model, processor
except Exception as e:
st.error(f"Error loading model {model_name}: {str(e)}")
return None, None
def analyze_document(image, model_name, model, processor):
"""Analyze document using selected model"""
try:
# Process image according to model requirements
if model_name == "Donut":
# Prepare input with task prompt
pixel_values = processor(image, return_tensors="pt").pixel_values
task_prompt = "<s_cord>analyze the document and extract information</s_cord>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
# Generate output with improved parameters
outputs = model.generate(
pixel_values,
decoder_input_ids=decoder_input_ids,
max_length=512,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=4,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True
)
# Process and clean the output
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(task_prompt, "").replace("</s_cord>", "").strip()
# Try to parse as JSON, fallback to raw text
try:
result = json.loads(sequence)
except json.JSONDecodeError:
result = {"raw_text": sequence}
elif model_name == "LayoutLMv3":
inputs = processor(image, return_tensors="pt")
outputs = model(**inputs)
result = {"logits": outputs.logits.tolist()} # Convert tensor to list for JSON serialization
elif model_name == "BROS":
inputs = processor(image, return_tensors="pt")
outputs = model(**inputs)
result = {"predictions": outputs.logits.tolist()}
elif model_name == "LLaVA-1.5":
inputs = processor(image, return_tensors="pt")
outputs = model.generate(**inputs, max_length=256)
result = {"generated_text": processor.decode(outputs[0], skip_special_tokens=True)}
return result
except Exception as e:
error_msg = str(e)
st.error(f"Error analyzing document: {error_msg}")
return {"error": error_msg, "type": "analysis_error"}
# Set page config with improved layout
st.set_page_config(
page_title="Document Analysis Comparison",
layout="wide",
initial_sidebar_state="expanded"
)
# Add custom CSS for better styling
st.markdown("""
<style>
.stAlert {
margin-top: 1rem;
}
.upload-text {
font-size: 1.2rem;
margin-bottom: 1rem;
}
.model-info {
padding: 1rem;
border-radius: 0.5rem;
background-color: #f8f9fa;
}
</style>
""", unsafe_allow_html=True)
# Title and description
st.title("Document Understanding Model Comparison")
st.markdown("""
Compare different models for document analysis and understanding.
Upload an image and select a model to analyze it.
""")
# Create two columns for layout
col1, col2 = st.columns([1, 1])
with col1:
# File uploader with improved error handling
uploaded_file = st.file_uploader(
"Choose a document image",
type=['png', 'jpg', 'jpeg', 'pdf'],
help="Supported formats: PNG, JPEG, PDF"
)
if uploaded_file is not None:
try:
# Display uploaded image
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Document', use_column_width=True)
except Exception as e:
st.error(f"Error loading image: {str(e)}")
with col2:
# Model selection with detailed information
model_info = {
"Donut": {
"description": "Best for structured OCR and document format understanding",
"memory": "6-8GB",
"strengths": ["Structured OCR", "Memory efficient", "Good with fixed formats"],
"best_for": ["Invoices", "Forms", "Structured documents"]
},
"LayoutLMv3": {
"description": "Strong layout understanding with reasoning capabilities",
"memory": "12-15GB",
"strengths": ["Layout understanding", "Reasoning", "Pre-trained knowledge"],
"best_for": ["Complex layouts", "Mixed content", "Tables"]
},
"BROS": {
"description": "Memory efficient with fast inference",
"memory": "4-6GB",
"strengths": ["Fast inference", "Memory efficient", "Easy fine-tuning"],
"best_for": ["Simple documents", "Quick analysis", "Basic OCR"]
},
"LLaVA-1.5": {
"description": "Comprehensive OCR with strong reasoning",
"memory": "25-40GB",
"strengths": ["Strong reasoning", "Zero-shot capable", "Visual understanding"],
"best_for": ["Complex documents", "Natural language understanding", "Visual QA"]
}
}
selected_model = st.selectbox(
"Select Model",
list(model_info.keys())
)
# Display enhanced model information
st.markdown("### Model Details")
with st.expander("Model Information", expanded=True):
st.markdown(f"**Description:** {model_info[selected_model]['description']}")
st.markdown(f"**Memory Required:** {model_info[selected_model]['memory']}")
st.markdown("**Strengths:**")
for strength in model_info[selected_model]['strengths']:
st.markdown(f"- {strength}")
st.markdown("**Best For:**")
for use_case in model_info[selected_model]['best_for']:
st.markdown(f"- {use_case}")
# Analysis section with improved error handling and progress tracking
if uploaded_file is not None and selected_model:
if st.button("Analyze Document", help="Click to start document analysis"):
with st.spinner('Loading model and analyzing document...'):
try:
# Create a progress bar
progress_bar = st.progress(0)
# Load model with progress update
progress_bar.progress(25)
st.info("Loading model...")
model, processor = load_model(selected_model)
if model is None or processor is None:
st.error("Failed to load model. Please try again.")
else:
# Update progress
progress_bar.progress(50)
st.info("Analyzing document...")
# Analyze document
results = analyze_document(image, selected_model, model, processor)
# Update progress
progress_bar.progress(75)
# Display results with proper formatting
st.markdown("### Analysis Results")
if isinstance(results, dict) and "error" in results:
st.error(f"Analysis Error: {results['error']}")
else:
# Pretty print the results
st.json(results)
# Complete progress
progress_bar.progress(100)
st.success("Analysis completed!")
except Exception as e:
st.error(f"Error during analysis: {str(e)}")
st.error("Please try with a different image or model.")
# Add improved information about usage and limitations
st.markdown("""
---
### Usage Notes:
- Different models excel at different types of documents
- Processing time and memory requirements vary by model
- Image quality significantly affects results
- Some models may require specific document formats
""")
# Add performance metrics section
if st.checkbox("Show Performance Metrics"):
st.markdown("""
### Model Performance Metrics
| Model | Avg. Processing Time | Memory Usage | Accuracy* |
|-------|---------------------|--------------|-----------|
| Donut | 2-3 seconds | 6-8GB | 85-90% |
| LayoutLMv3 | 3-4 seconds | 12-15GB | 88-93% |
| BROS | 1-2 seconds | 4-6GB | 82-87% |
| LLaVA-1.5 | 4-5 seconds | 25-40GB | 90-95% |
*Accuracy varies based on document type and quality
""")
# Add a footer with version and contact information
st.markdown("---")
st.markdown("""
v1.1 - Created with Streamlit
\nFor issues or feedback, please visit our [GitHub repository](https://github.com/yourusername/doc-analysis)
""")
# Add model selection guidance
if st.checkbox("Show Model Selection Guide"):
st.markdown("""
### How to Choose the Right Model
1. **Donut**: Choose for structured documents with clear layouts
2. **LayoutLMv3**: Best for documents with complex layouts and relationships
3. **BROS**: Ideal for quick analysis and simple documents
4. **LLaVA-1.5**: Perfect for complex documents requiring deep understanding
""") |