Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -119,11 +119,9 @@ def fill_image(image, model_selection):
|
|
| 119 |
target_aspect = target_width / target_height
|
| 120 |
|
| 121 |
if source_aspect > target_aspect:
|
| 122 |
-
# Image is wider than target ratio, fit to width
|
| 123 |
new_width = target_width
|
| 124 |
new_height = int(new_width / source_aspect)
|
| 125 |
else:
|
| 126 |
-
# Image is taller than target ratio, fit to height
|
| 127 |
new_height = target_height
|
| 128 |
new_width = int(new_height * source_aspect)
|
| 129 |
|
|
@@ -140,25 +138,24 @@ def fill_image(image, model_selection):
|
|
| 140 |
position = (margin_x, margin_y)
|
| 141 |
background.paste(resized_source, position)
|
| 142 |
|
| 143 |
-
# Create the mask
|
| 144 |
-
mask = Image.new('L', (target_width, target_height), 255)
|
| 145 |
mask_array = np.array(mask)
|
| 146 |
|
| 147 |
-
# Create gradient
|
| 148 |
for i in range(fade_width):
|
| 149 |
alpha = i / fade_width
|
| 150 |
-
|
| 151 |
-
mask_array[:, margin_x+new_width
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
mask_array[margin_y
|
| 158 |
-
|
| 159 |
-
# Set the
|
| 160 |
-
mask_array[margin_y
|
| 161 |
-
margin_x+overlap+fade_width:margin_x+new_width-overlap-fade_width] = 0
|
| 162 |
|
| 163 |
mask = Image.fromarray(mask_array.astype('uint8'), 'L')
|
| 164 |
|
|
|
|
| 119 |
target_aspect = target_width / target_height
|
| 120 |
|
| 121 |
if source_aspect > target_aspect:
|
|
|
|
| 122 |
new_width = target_width
|
| 123 |
new_height = int(new_width / source_aspect)
|
| 124 |
else:
|
|
|
|
| 125 |
new_height = target_height
|
| 126 |
new_width = int(new_height * source_aspect)
|
| 127 |
|
|
|
|
| 138 |
position = (margin_x, margin_y)
|
| 139 |
background.paste(resized_source, position)
|
| 140 |
|
| 141 |
+
# Create the mask
|
| 142 |
+
mask = Image.new('L', (target_width, target_height), 255) # Start with all white
|
| 143 |
mask_array = np.array(mask)
|
| 144 |
|
| 145 |
+
# Create gradient only at the edges adjacent to the original image
|
| 146 |
for i in range(fade_width):
|
| 147 |
alpha = i / fade_width
|
| 148 |
+
# Right edge
|
| 149 |
+
mask_array[:, margin_x + new_width + i] = np.minimum(mask_array[:, margin_x + new_width + i], int(255 * alpha))
|
| 150 |
+
# Left edge
|
| 151 |
+
mask_array[:, margin_x - i - 1] = np.minimum(mask_array[:, margin_x - i - 1], int(255 * alpha))
|
| 152 |
+
# Bottom edge
|
| 153 |
+
mask_array[margin_y + new_height + i, :] = np.minimum(mask_array[margin_y + new_height + i, :], int(255 * alpha))
|
| 154 |
+
# Top edge
|
| 155 |
+
mask_array[margin_y - i - 1, :] = np.minimum(mask_array[margin_y - i - 1, :], int(255 * alpha))
|
| 156 |
+
|
| 157 |
+
# Set the area of the original image to black (0)
|
| 158 |
+
mask_array[margin_y:margin_y+new_height, margin_x:margin_x+new_width] = 0
|
|
|
|
| 159 |
|
| 160 |
mask = Image.fromarray(mask_array.astype('uint8'), 'L')
|
| 161 |
|