import streamlit as st from diffusers import DiffusionPipeline # Load the Diffusion pipeline @st.cache(allow_output_mutation=True) def load_diffusion_pipeline(): try: pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3-medium") return pipeline except Exception as e: st.error(f"Error loading model: {e}") def generate_response(prompt_text, pipeline): try: response = pipeline(prompt_text, top_p=0.9, max_length=100)[0]['generated_text'] return response except Exception as e: st.error(f"Error generating response: {e}") def main(): st.title('Hugging Face Diffusion Model') # Load the model pipeline = load_diffusion_pipeline() # Text input for the prompt prompt_text = st.text_area("Enter your prompt here:", height=200) # Button to generate prompt if st.button("Generate"): if prompt_text: with st.spinner('Generating...'): generated_text = generate_response(prompt_text, pipeline) st.success('Generation complete!') st.text_area('Generated Text:', value=generated_text, height=400) else: st.warning('Please enter a prompt.') if __name__ == '__main__': main()