Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,17 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
|
|
|
|
3 |
|
4 |
# Load the audio classification pipeline
|
5 |
audio_classification_pipeline = pipeline("audio-classification", model="MIT/ast-finetuned-audioset-10-10-0.4593")
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def classify_audio(audio_file):
|
8 |
# Perform audio classification
|
9 |
results = audio_classification_pipeline(audio=audio_file)
|
@@ -14,19 +22,21 @@ def main():
|
|
14 |
|
15 |
# File uploader for audio file
|
16 |
st.subheader('Upload Audio File:')
|
17 |
-
audio_file = st.file_uploader("Choose
|
18 |
|
19 |
# Check if audio file is uploaded
|
20 |
if audio_file is not None:
|
21 |
-
st.audio(audio_file, format='audio/
|
22 |
|
23 |
# Button to classify audio
|
24 |
if st.button('Classify'):
|
25 |
with st.spinner('Classifying...'):
|
26 |
-
#
|
27 |
-
|
|
|
28 |
st.success('Classification complete!')
|
29 |
st.write("Prediction:", results)
|
30 |
|
31 |
if __name__ == '__main__':
|
32 |
main()
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
+
from pydub import AudioSegment
|
4 |
+
import io
|
5 |
|
6 |
# Load the audio classification pipeline
|
7 |
audio_classification_pipeline = pipeline("audio-classification", model="MIT/ast-finetuned-audioset-10-10-0.4593")
|
8 |
|
9 |
+
def convert_mp3_to_wav(audio_bytes):
|
10 |
+
# Convert MP3 bytes to WAV format
|
11 |
+
audio = AudioSegment.from_file(io.BytesIO(audio_bytes), format="mp3")
|
12 |
+
wav_bytes = audio.export(format="wav").read()
|
13 |
+
return wav_bytes
|
14 |
+
|
15 |
def classify_audio(audio_file):
|
16 |
# Perform audio classification
|
17 |
results = audio_classification_pipeline(audio=audio_file)
|
|
|
22 |
|
23 |
# File uploader for audio file
|
24 |
st.subheader('Upload Audio File:')
|
25 |
+
audio_file = st.file_uploader("Choose an MP3 file", type=["mp3"])
|
26 |
|
27 |
# Check if audio file is uploaded
|
28 |
if audio_file is not None:
|
29 |
+
st.audio(audio_file, format='audio/mp3')
|
30 |
|
31 |
# Button to classify audio
|
32 |
if st.button('Classify'):
|
33 |
with st.spinner('Classifying...'):
|
34 |
+
# Convert MP3 to WAV and classify
|
35 |
+
wav_bytes = convert_mp3_to_wav(audio_file.read())
|
36 |
+
results = classify_audio(wav_bytes)
|
37 |
st.success('Classification complete!')
|
38 |
st.write("Prediction:", results)
|
39 |
|
40 |
if __name__ == '__main__':
|
41 |
main()
|
42 |
+
|