Spaces:
Sleeping
Sleeping
File size: 1,034 Bytes
31b3285 ec7471c 31b3285 ec7471c 3d74153 ec7471c 6f473bc 7d671a1 ec7471c 110b7d6 ec7471c 6f473bc ec7471c 31b3285 ec7471c 6f473bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import streamlit as st
from transformers import pipeline
# Load the audio classification pipeline
audio_classification_pipeline = pipeline("audio-classification", model="MIT/ast-finetuned-audioset-10-10-0.4593")
def classify_audio(audio_file):
# Perform audio classification
results = audio_classification_pipeline(audio=audio_file)
return results
def main():
st.title('Hugging Face Audio Classification')
# File uploader for audio file
st.subheader('Upload Audio File:')
audio_file = st.file_uploader("Choose a WAV file", type=["wav"])
# Check if audio file is uploaded
if audio_file is not None:
st.audio(audio_file, format='audio/wav')
# Button to classify audio
if st.button('Classify'):
with st.spinner('Classifying...'):
# Perform classification
results = classify_audio(audio_file)
st.success('Classification complete!')
st.write("Prediction:", results)
if __name__ == '__main__':
main()
|