File size: 1,270 Bytes
31b3285
110b7d6
31b3285
110b7d6
 
 
349bb4d
110b7d6
 
 
349bb4d
3d74153
110b7d6
 
 
 
 
 
6f473bc
7d671a1
110b7d6
 
 
 
6f473bc
 
 
31b3285
6f473bc
 
 
 
110b7d6
6f473bc
 
 
 
 
 
 
31b3285
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import streamlit as st
from diffusers import DiffusionPipeline

# Load the Diffusion pipeline
@st.cache(allow_output_mutation=True)
def load_diffusion_pipeline():
    try:
        pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3-medium")
        return pipeline
    except Exception as e:
        st.error(f"Error loading model: {e}")

def generate_response(prompt_text, pipeline):
    try:
        response = pipeline(prompt_text, top_p=0.9, max_length=100)[0]['generated_text']
        return response
    except Exception as e:
        st.error(f"Error generating response: {e}")

def main():
    st.title('Hugging Face Diffusion Model')

    # Load the model
    pipeline = load_diffusion_pipeline()

    # Text input for the prompt
    prompt_text = st.text_area("Enter your prompt here:", height=200)

    # Button to generate prompt
    if st.button("Generate"):
        if prompt_text:
            with st.spinner('Generating...'):
                generated_text = generate_response(prompt_text, pipeline)
            st.success('Generation complete!')
            st.text_area('Generated Text:', value=generated_text, height=400)
        else:
            st.warning('Please enter a prompt.')

if __name__ == '__main__':
    main()