import gradio as gr from PIL import Image import torch from torchvision.io import read_image from transformers import ViTImageProcessor,pipeline model = ViTImageProcessor.from_pretrained('SeyedAli/Food-Image-Classification-VIT') def FoodClassification(image): image = read_image(image) # Encode your PIL Image as a JPEG without writing to disk # buffer = io.BytesIO(image) # YourImage.save(buffer, format='JPEG', quality=75) # # You probably want # desiredObject = buffer.getbuffer() pipline = pipeline(task="image-classification", model=model) #output=pipline(model(Image.open(desiredObject), return_tensors='pt')) output=pipline(image, return_tensors='pt')) return output iface = gr.Interface(fn=FoodClassification, inputs="image", outputs="text") iface.launch(share=False)