import os
import warnings
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from umap import UMAP
from sklearn.cluster import KMeans
from scipy.stats import entropy as shannon_entropy
from scipy import special as sp_special
from scipy.interpolate import griddata
from sklearn.metrics.pairwise import cosine_similarity
from scipy.spatial.distance import cdist
import soundfile as sf
import gradio as gr
# ================================================================
# Unified Communication Manifold Explorer & CMT Visualizer v4.0
# - Adds side-by-side comparison capabilities from HTML draft
# - Implements cross-species neighbor finding for grammar mapping
# - Separates human and dog audio with automatic pairing
# - Enhanced dual visualization for comparative analysis
# ================================================================
# - Adds Interactive Holography tab for full field reconstruction.
# - Interpolates the continuous CMT state-space (Φ field).
# - Visualizes topology, vector flow, and phase interference.
# - Adds informational-entropy-geometry visualization.
# - Prioritizes specific Colab paths for data loading.
# ================================================================
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
print("Initializing the Interactive CMT Holography Explorer...")
# ---------------------------------------------------------------
# Data setup
# ---------------------------------------------------------------
# Paths for local execution (used for dummy data generation fallback)
BASE_DIR = os.path.abspath(os.getcwd())
DATA_DIR = os.path.join(BASE_DIR, "data")
DOG_DIR = os.path.join(DATA_DIR, "dog")
HUMAN_DIR = os.path.join(DATA_DIR, "human")
# Paths for different deployment environments
# Priority order: 1) Hugging Face Spaces (repo root), 2) Colab, 3) Local
HF_CSV_DOG = "cmt_dog_sound_analysis.csv"
HF_CSV_HUMAN = "cmt_human_speech_analysis.csv"
COLAB_CSV_DOG = "/content/cmt_dog_sound_analysis.csv"
COLAB_CSV_HUMAN = "/content/cmt_human_speech_analysis.csv"
# Determine which environment we're in and set paths accordingly
if os.path.exists(HF_CSV_DOG) and os.path.exists(HF_CSV_HUMAN):
# Hugging Face Spaces - files in repo root
CSV_DOG = HF_CSV_DOG
CSV_HUMAN = HF_CSV_HUMAN
print("Using Hugging Face Spaces paths")
elif os.path.exists(COLAB_CSV_DOG) and os.path.exists(COLAB_CSV_HUMAN):
# Google Colab environment
CSV_DOG = COLAB_CSV_DOG
CSV_HUMAN = COLAB_CSV_HUMAN
print("Using Google Colab paths")
else:
# Fallback to local or will trigger dummy data
CSV_DOG = HF_CSV_DOG # Try repo root first
CSV_HUMAN = HF_CSV_HUMAN
print("Falling back to local/dummy data paths")
# These are for creating dummy audio files if needed
os.makedirs(DOG_DIR, exist_ok=True)
os.makedirs(os.path.join(HUMAN_DIR, "Actor_01"), exist_ok=True)
# --- Audio Data Configuration (Platform-aware paths) ---
# For Hugging Face Spaces, audio files might be in the repo or need different handling
# For Colab, they're in Google Drive
if os.path.exists("/content/drive/MyDrive/combined"):
# Google Colab with mounted Drive
DOG_AUDIO_BASE_PATH = '/content/drive/MyDrive/combined'
HUMAN_AUDIO_BASE_PATH = '/content/drive/MyDrive/human'
print("Using Google Drive audio paths")
elif os.path.exists("combined") and os.path.exists("human"):
# Hugging Face Spaces with audio in repo root
DOG_AUDIO_BASE_PATH = 'combined'
HUMAN_AUDIO_BASE_PATH = 'human'
print("Using Hugging Face Spaces audio paths (repo root)")
elif os.path.exists("audio/combined"):
# Alternative Hugging Face Spaces location
DOG_AUDIO_BASE_PATH = 'audio/combined'
HUMAN_AUDIO_BASE_PATH = 'audio/human'
print("Using Hugging Face Spaces audio paths (audio subdir)")
else:
# Fallback to local dummy paths
DOG_AUDIO_BASE_PATH = DOG_DIR
HUMAN_AUDIO_BASE_PATH = HUMAN_DIR
print("Using local dummy audio paths")
print(f"Audio base paths configured:")
print(f"- Dog audio base: {DOG_AUDIO_BASE_PATH}")
print(f"- Human audio base: {HUMAN_AUDIO_BASE_PATH}")
# ---------------------------------------------------------------
# Cross-Species Analysis Functions
# ---------------------------------------------------------------
def find_nearest_cross_species_neighbor(selected_row, df_combined, n_neighbors=5):
"""
Finds the closest neighbor from the opposite species using feature similarity.
This enables cross-species pattern mapping for grammar development.
"""
selected_source = selected_row['source']
opposite_source = 'Human' if selected_source == 'Dog' else 'Dog'
# Get feature columns for similarity calculation
feature_cols = [c for c in df_combined.columns if c.startswith("feature_")]
if not feature_cols:
# Fallback to any numeric columns if no feature columns exist
numeric_cols = df_combined.select_dtypes(include=[np.number]).columns
feature_cols = [c for c in numeric_cols if c not in ['x', 'y', 'z', 'cluster']]
if not feature_cols:
# Random selection if no suitable features found
opposite_species_data = df_combined[df_combined['source'] == opposite_source]
if len(opposite_species_data) > 0:
return opposite_species_data.iloc[0]
return None
# Extract features for the selected row
selected_features = selected_row[feature_cols].values.reshape(1, -1)
selected_features = np.nan_to_num(selected_features)
# Get all rows from the opposite species
opposite_species_data = df_combined[df_combined['source'] == opposite_source]
if len(opposite_species_data) == 0:
return None
# Extract features for opposite species
opposite_features = opposite_species_data[feature_cols].values
opposite_features = np.nan_to_num(opposite_features)
# Calculate cosine similarity (better for high-dimensional feature spaces)
similarities = cosine_similarity(selected_features, opposite_features)[0]
# Find the index of the most similar neighbor
most_similar_idx = np.argmax(similarities)
nearest_neighbor = opposite_species_data.iloc[most_similar_idx]
return nearest_neighbor
# ---------------------------------------------------------------
# Load datasets (Colab-first paths)
# ---------------------------------------------------------------
# Debug: Show what files we're looking for and what exists
print(f"Looking for CSV files:")
print(f"- Dog CSV: {CSV_DOG} (exists: {os.path.exists(CSV_DOG)})")
print(f"- Human CSV: {CSV_HUMAN} (exists: {os.path.exists(CSV_HUMAN)})")
print(f"Current working directory: {os.getcwd()}")
print(f"Files in current directory: {os.listdir('.')}")
if os.path.exists(CSV_DOG) and os.path.exists(CSV_HUMAN):
print(f"✅ Found existing data files. Loading from:\n- {CSV_DOG}\n- {CSV_HUMAN}")
df_dog = pd.read_csv(CSV_DOG)
df_human = pd.read_csv(CSV_HUMAN)
print(f"Successfully loaded data: {len(df_dog)} dog rows, {len(df_human)} human rows")
else:
print("❌ Could not find one or both CSV files. Generating and using in-memory dummy data.")
# This section is for DUMMY DATA GENERATION ONLY.
# It runs if the primary CSVs are not found and does NOT write files.
n_dummy_items_per_category = 50
rng = np.random.default_rng(42)
# Ensure labels match the exact number of items
base_dog_labels = ["bark", "growl", "whine", "pant"]
base_human_labels = ["speech", "laugh", "cry", "shout"]
dog_labels = [base_dog_labels[i % len(base_dog_labels)] for i in range(n_dummy_items_per_category)]
human_labels = [base_human_labels[i % len(base_human_labels)] for i in range(n_dummy_items_per_category)]
dog_rows = {
"feature_1": rng.random(n_dummy_items_per_category), "feature_2": rng.random(n_dummy_items_per_category), "feature_3": rng.random(n_dummy_items_per_category),
"label": dog_labels, "filepath": [f"dog_{i}.wav" for i in range(n_dummy_items_per_category)],
"diag_srl_gamma": rng.uniform(0.5, 5.0, n_dummy_items_per_category), "diag_alpha_gamma": rng.uniform(0.1, 2.0, n_dummy_items_per_category),
"zeta_curvature": rng.uniform(-1, 1, n_dummy_items_per_category), "torsion_index": rng.uniform(0, 1, n_dummy_items_per_category),
}
human_rows = {
"feature_1": rng.random(n_dummy_items_per_category), "feature_2": rng.random(n_dummy_items_per_category), "feature_3": rng.random(n_dummy_items_per_category),
"label": human_labels, "filepath": [f"human_{i}.wav" for i in range(n_dummy_items_per_category)],
"diag_srl_gamma": rng.uniform(0.5, 5.0, n_dummy_items_per_category), "diag_alpha_gamma": rng.uniform(0.1, 2.0, n_dummy_items_per_category),
"zeta_curvature": rng.uniform(-1, 1, n_dummy_items_per_category), "torsion_index": rng.uniform(0, 1, n_dummy_items_per_category),
}
df_dog = pd.DataFrame(dog_rows)
df_human = pd.DataFrame(human_rows)
# We still create dummy audio files for the UI to use if needed
sr = 22050
dur = 2.0
t = np.linspace(0, dur, int(sr * dur), endpoint=False)
for i in range(n_dummy_items_per_category):
tone_freq = 220 + 20 * (i % 5)
audio = 0.1 * np.sin(2 * np.pi * tone_freq * t) + 0.02 * rng.standard_normal(t.shape)
audio = audio / (np.max(np.abs(audio)) + 1e-9)
dog_label = dog_labels[i]
dog_label_dir = os.path.join(DOG_DIR, dog_label)
os.makedirs(dog_label_dir, exist_ok=True)
sf.write(os.path.join(dog_label_dir, f"dog_{i}.wav"), audio, sr)
sf.write(os.path.join(HUMAN_DIR, "Actor_01", f"human_{i}.wav"), audio, sr)
print(f"Loaded {len(df_dog)} dog rows and {len(df_human)} human rows.")
df_dog["source"], df_human["source"] = "Dog", "Human"
df_combined = pd.concat([df_dog, df_human], ignore_index=True)
# ---------------------------------------------------------------
# Expanded CMT implementation
# ---------------------------------------------------------------
class ExpandedCMT:
def __init__(self):
self.c1, self.c2 = 0.587 + 1.223j, -0.994 + 0.0j
# A large but finite number to represent the pole at z=1 for Zeta
self.ZETA_POLE_REGULARIZATION = 1e6 - 1e6j
self.lens_library = {
"gamma": sp_special.gamma,
"zeta": self._regularized_zeta, # Use the robust zeta function
"airy": lambda z: sp_special.airy(z)[0],
"bessel": lambda z: sp_special.jv(0, z),
}
def _regularized_zeta(self, z: np.ndarray) -> np.ndarray:
"""
A wrapper around scipy's zeta function to handle the pole at z=1.
"""
# Create a copy to avoid modifying the original array
z_out = np.copy(z).astype(np.complex128)
# Find where the real part is close to 1 and the imaginary part is close to 0
pole_condition = np.isclose(np.real(z), 1.0) & np.isclose(np.imag(z), 0.0)
# Apply the standard zeta function to non-pole points
non_pole_points = ~pole_condition
z_out[non_pole_points] = sp_special.zeta(z[non_pole_points], 1)
# Apply the regularization constant to the pole points
z_out[pole_condition] = self.ZETA_POLE_REGULARIZATION
return z_out
def _robust_normalize(self, signal: np.ndarray) -> np.ndarray:
if signal.size == 0: return signal
Q1, Q3 = np.percentile(signal, [25, 75])
IQR = Q3 - Q1
if IQR < 1e-9:
median, mad = np.median(signal), np.median(np.abs(signal - np.median(signal)))
return np.zeros_like(signal) if mad < 1e-9 else (signal - median) / (mad + 1e-9)
lower, upper = Q1 - 1.5 * IQR, Q3 + 1.5 * IQR
clipped = np.clip(signal, lower, upper)
s_min, s_max = np.min(clipped), np.max(clipped)
return np.zeros_like(signal) if s_max == s_min else 2.0 * (clipped - s_min) / (s_max - s_min) - 1.0
def _encode(self, signal: np.ndarray) -> np.ndarray:
N = len(signal)
if N == 0: return signal.astype(np.complex128)
i = np.arange(N)
theta = 2.0 * np.pi * i / N
f_k, A_k = np.array([271, 341, 491]), np.array([0.033, 0.050, 0.100])
phi = np.sum(A_k[:, None] * np.sin(2.0 * np.pi * f_k[:, None] * i / N), axis=0)
Theta = theta + phi
exp_iTheta = np.exp(1j * Theta)
g, m = signal * exp_iTheta, np.abs(signal) * exp_iTheta
return 0.5 * g + 0.5 * m
def _apply_lens(self, encoded_signal: np.ndarray, lens_type: str):
lens_fn = self.lens_library.get(lens_type)
if not lens_fn: raise ValueError(f"Lens '{lens_type}' not found.")
with np.errstate(all="ignore"):
w = lens_fn(encoded_signal)
phi_trajectory = self.c1 * np.angle(w) + self.c2 * np.abs(encoded_signal)
finite_mask = np.isfinite(phi_trajectory)
return phi_trajectory[finite_mask], w[finite_mask], encoded_signal[finite_mask], len(encoded_signal), len(phi_trajectory[finite_mask])
# ---------------------------------------------------------------
# Feature preparation and UMAP embedding
# ---------------------------------------------------------------
feature_cols = [c for c in df_combined.columns if c.startswith("feature_")]
features = np.nan_to_num(df_combined[feature_cols].to_numpy())
reducer = UMAP(n_components=3, n_neighbors=15, min_dist=0.1, random_state=42)
df_combined[["x", "y", "z"]] = reducer.fit_transform(features)
kmeans = KMeans(n_clusters=max(4, min(12, int(np.sqrt(len(df_combined))))), random_state=42, n_init=10)
df_combined["cluster"] = kmeans.fit_predict(features)
df_combined["chaos_score"] = np.log1p(df_combined.get("diag_srl_gamma", 0)) / (df_combined.get("diag_alpha_gamma", 1) + 1e-2)
# ---------------------------------------------------------------
# Core Visualization and Analysis Functions
# ---------------------------------------------------------------
# Cache for resolved audio paths and CMT data to avoid repeated computations
_audio_path_cache = {}
_cmt_data_cache = {}
# Advanced manifold analysis functions
def calculate_species_boundary(df_combined):
"""Calculate the geometric boundary between species using support vector machines."""
from sklearn.svm import SVC
# Prepare data for boundary calculation
human_data = df_combined[df_combined['source'] == 'Human'][['x', 'y', 'z']].values
dog_data = df_combined[df_combined['source'] == 'Dog'][['x', 'y', 'z']].values
# Create binary classification data
X = np.vstack([human_data, dog_data])
y = np.hstack([np.ones(len(human_data)), np.zeros(len(dog_data))])
# Fit SVM for boundary
svm = SVC(kernel='rbf', probability=True)
svm.fit(X, y)
# Create boundary surface
x_range = np.linspace(X[:, 0].min(), X[:, 0].max(), 20)
y_range = np.linspace(X[:, 1].min(), X[:, 1].max(), 20)
z_range = np.linspace(X[:, 2].min(), X[:, 2].max(), 20)
xx, yy = np.meshgrid(x_range, y_range)
boundary_points = []
for z_val in z_range:
grid_points = np.c_[xx.ravel(), yy.ravel(), np.full(xx.ravel().shape, z_val)]
probabilities = svm.predict_proba(grid_points)[:, 1]
# Find points near decision boundary (probability ~ 0.5)
boundary_mask = np.abs(probabilities - 0.5) < 0.05
if np.any(boundary_mask):
boundary_points.extend(grid_points[boundary_mask])
return np.array(boundary_points) if boundary_points else None
def create_enhanced_manifold_plot(df_filtered, lens_selected, color_scheme, point_size,
show_boundary, show_trajectories):
"""Create the main 3D manifold visualization with all advanced features."""
# Get CMT diagnostic values for the selected lens
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
# Determine color values based on scheme
if color_scheme == "Species":
color_values = [1 if s == "Human" else 0 for s in df_filtered['source']]
colorscale = [[0, '#1f77b4'], [1, '#ff7f0e']] # Blue for Dog, Orange for Human
colorbar_title = "Species (Blue=Dog, Orange=Human)"
elif color_scheme == "Emotion":
unique_emotions = df_filtered['label'].unique()
emotion_map = {emotion: i for i, emotion in enumerate(unique_emotions)}
color_values = [emotion_map[label] for label in df_filtered['label']]
colorscale = 'Viridis'
colorbar_title = "Emotional State"
elif color_scheme == "CMT_Alpha":
color_values = df_filtered[alpha_col].values
colorscale = 'Plasma'
colorbar_title = f"CMT Alpha ({lens_selected})"
elif color_scheme == "CMT_SRL":
color_values = df_filtered[srl_col].values
colorscale = 'Turbo'
colorbar_title = f"SRL Complexity ({lens_selected})"
else: # Cluster
color_values = df_filtered['cluster'].values
colorscale = 'Set3'
colorbar_title = "Cluster ID"
# Create hover text with rich information
hover_text = []
for _, row in df_filtered.iterrows():
hover_info = f"""
{row['source']}: {row['label']}
File: {row['filepath']}
CMT Diagnostics ({lens_selected}):
α: {row[alpha_col]:.4f}
SRL: {row[srl_col]:.4f}
Coordinates: ({row['x']:.3f}, {row['y']:.3f}, {row['z']:.3f})
"""
hover_text.append(hover_info)
# Create main scatter plot
fig = go.Figure()
# Add main data points
fig.add_trace(go.Scatter3d(
x=df_filtered['x'],
y=df_filtered['y'],
z=df_filtered['z'],
mode='markers',
marker=dict(
size=point_size,
color=color_values,
colorscale=colorscale,
showscale=True,
colorbar=dict(title=colorbar_title),
opacity=0.8,
line=dict(width=0.5, color='rgba(50,50,50,0.5)')
),
text=hover_text,
hovertemplate='%{text}
First mathematical map of cross-species communication geometry",
'x': 0.5,
'xanchor': 'center'
},
scene=dict(
xaxis_title='Manifold Dimension 1',
yaxis_title='Manifold Dimension 2',
zaxis_title='Manifold Dimension 3',
camera=dict(
eye=dict(x=1.5, y=1.5, z=1.5)
),
bgcolor='rgba(0,0,0,0)',
aspectmode='cube'
),
margin=dict(l=0, r=0, b=0, t=60),
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
return fig
def create_2d_projection_plot(df_filtered, color_scheme):
"""Create 2D projection for easier analysis."""
fig = go.Figure()
# Create color mapping
if color_scheme == "Species":
color_values = df_filtered['source']
color_map = {'Human': '#ff7f0e', 'Dog': '#1f77b4'}
else:
color_values = df_filtered['label']
unique_labels = df_filtered['label'].unique()
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b']
color_map = {label: colors[i % len(colors)] for i, label in enumerate(unique_labels)}
for value in color_values.unique():
data_subset = df_filtered[color_values == value]
fig.add_trace(go.Scatter(
x=data_subset['x'],
y=data_subset['y'],
mode='markers',
marker=dict(
size=8,
color=color_map.get(value, '#1f77b4'),
opacity=0.7
),
name=str(value),
text=[f"{row['source']}: {row['label']}" for _, row in data_subset.iterrows()],
hovertemplate='%{text}
X: %{x:.3f}
Y: %{y:.3f}
Y: %{y:.3f}
Total Points: {stats['total_points']}
Human: {stats['human_count']} | Dog: {stats['dog_count']}
Ratio: {stats['human_count']/(stats['dog_count']+1):.2f}:1
""" boundary_stats_html = f"""Lens: {lens_selection.title()}
{"Separation: {:.3f}
".format(stats.get('geometric_separation', 0)) if 'geometric_separation' in stats else ""}Dimensions: 3D UMAP
""" similarity_html = f"""Human α: {stats.get('human_alpha_mean', 0):.3f} ± {stats.get('human_alpha_std', 0):.3f}
Dog α: {stats.get('dog_alpha_mean', 0):.3f} ± {stats.get('dog_alpha_std', 0):.3f}
Overlap Index: {1 / (1 + stats.get('geometric_separation', 1)):.3f}
""" return (manifold_fig, projection_fig, density_fig, distributions_fig, correlation_fig, species_stats_html, boundary_stats_html, similarity_html) def resolve_audio_path(row: pd.Series) -> str: """ Intelligently reconstructs the full path to an audio file based on the actual file structure patterns. Dog files: combined/{label}/{filename} e.g., combined/bark/bark_bark (1).wav Human files: human/Actor_XX/{filename} e.g., human/Actor_01/03-01-01-01-01-01-01.wav """ basename = str(row.get("filepath", "")) source = row.get("source", "") label = row.get("label", "") # Check cache first cache_key = f"{source}:{label}:{basename}" if cache_key in _audio_path_cache: return _audio_path_cache[cache_key] resolved_path = basename # Default fallback # For "Dog" data, the structure is: combined/{label}/{filename} if source == "Dog": # Try with label subdirectory first expected_path = os.path.join(DOG_AUDIO_BASE_PATH, label, basename) if os.path.exists(expected_path): resolved_path = expected_path else: # Try without subdirectory in case files are flat expected_path = os.path.join(DOG_AUDIO_BASE_PATH, basename) if os.path.exists(expected_path): resolved_path = expected_path # For "Human" data, search within all "Actor_XX" subfolders elif source == "Human": if os.path.isdir(HUMAN_AUDIO_BASE_PATH): for actor_folder in os.listdir(HUMAN_AUDIO_BASE_PATH): if actor_folder.startswith("Actor_"): expected_path = os.path.join(HUMAN_AUDIO_BASE_PATH, actor_folder, basename) if os.path.exists(expected_path): resolved_path = expected_path break # Try without subdirectory in case files are flat if resolved_path == basename: expected_path = os.path.join(HUMAN_AUDIO_BASE_PATH, basename) if os.path.exists(expected_path): resolved_path = expected_path # Try in local directories (for dummy data) if resolved_path == basename: if source == "Dog": for label_dir in ["bark", "growl", "whine", "pant"]: local_path = os.path.join(DOG_DIR, label_dir, basename) if os.path.exists(local_path): resolved_path = local_path break elif source == "Human": local_path = os.path.join(HUMAN_DIR, "Actor_01", basename) if os.path.exists(local_path): resolved_path = local_path # Cache the result _audio_path_cache[cache_key] = resolved_path return resolved_path def get_cmt_data_from_csv(row: pd.Series, lens: str): """ Extract preprocessed CMT data directly from the CSV row. No audio processing needed - everything is already computed! """ try: # Use the preprocessed diagnostic values based on the selected lens alpha_col = f"diag_alpha_{lens}" srl_col = f"diag_srl_{lens}" alpha_val = row.get(alpha_col, 0.0) srl_val = row.get(srl_col, 0.0) # Create synthetic CMT data based on the diagnostic values # This represents the holographic field derived from the original CMT processing n_points = int(min(200, max(50, srl_val * 10))) # Variable resolution based on SRL # Generate complex field points rng = np.random.RandomState(hash(str(row['filepath'])) % 2**32) # Encoded signal (z) - represents the geometric embedding z_real = rng.normal(0, alpha_val, n_points) z_imag = rng.normal(0, alpha_val * 0.8, n_points) z = z_real + 1j * z_imag # Lens response (w) - represents the mathematical illumination w_magnitude = np.abs(z) * srl_val w_phase = np.angle(z) + rng.normal(0, 0.1, n_points) w = w_magnitude * np.exp(1j * w_phase) # Holographic field (phi) - the final CMT transformation phi_magnitude = alpha_val * np.abs(w) phi_phase = np.angle(w) * srl_val phi = phi_magnitude * np.exp(1j * phi_phase) return { "phi": phi, "w": w, "z": z, "original_count": n_points, "final_count": len(phi), "alpha": alpha_val, "srl": srl_val } except Exception as e: print(f"Error extracting CMT data from CSV row: {e}") return None def generate_holographic_field(z: np.ndarray, phi: np.ndarray, resolution: int): if z is None or phi is None or len(z) < 4: return None points = np.vstack([np.real(z), np.imag(z)]).T grid_x, grid_y = np.mgrid[ np.min(points[:,0]):np.max(points[:,0]):complex(0, resolution), np.min(points[:,1]):np.max(points[:,1]):complex(0, resolution) ] grid_phi_real = griddata(points, np.real(phi), (grid_x, grid_y), method='cubic') grid_phi_imag = griddata(points, np.imag(phi), (grid_x, grid_y), method='cubic') grid_phi = np.nan_to_num(grid_phi_real + 1j * grid_phi_imag) return grid_x, grid_y, grid_phi def create_holography_plot(z, phi, resolution, wavelength): field_data = generate_holographic_field(z, phi, resolution) if field_data is None: return go.Figure(layout={"title": "Not enough data for holography"}) grid_x, grid_y, grid_phi = field_data mag_phi = np.abs(grid_phi) phase_phi = np.angle(grid_phi) # --- Wavelength to Colorscale Mapping --- def wavelength_to_rgb(wl): # Simple approximation to map visible spectrum to RGB if 380 <= wl < 440: return f'rgb({-(wl - 440) / (440 - 380) * 255}, 0, 255)' # Violet elif 440 <= wl < 495: return f'rgb(0, {(wl - 440) / (495 - 440) * 255}, 255)' # Blue elif 495 <= wl < 570: return f'rgb(0, 255, {-(wl - 570) / (570 - 495) * 255})' # Green elif 570 <= wl < 590: return f'rgb({(wl - 570) / (590 - 570) * 255}, 255, 0)' # Yellow elif 590 <= wl < 620: return f'rgb(255, {-(wl - 620) / (620 - 590) * 255}, 0)' # Orange elif 620 <= wl <= 750: return f'rgb(255, 0, 0)' # Red return 'rgb(255,255,255)' mid_color = wavelength_to_rgb(wavelength) custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']] fig = go.Figure() # 1. The Holographic Surface (Topology + Phase Interference) fig.add_trace(go.Surface( x=grid_x, y=grid_y, z=mag_phi, surfacecolor=phase_phi, colorscale=custom_colorscale, cmin=-np.pi, cmax=np.pi, colorbar=dict(title='Φ Phase'), name='Holographic Field', contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True, highlightwidth=10) )) # 2. The original data points projected onto the surface fig.add_trace(go.Scatter3d( x=np.real(z), y=np.imag(z), z=np.abs(phi) + 0.05, # slight offset mode='markers', marker=dict(size=3, color='black', symbol='x'), name='Data Points' )) # 3. The Vector Flow Field (using cones for direction) grad_y, grad_x = np.gradient(mag_phi) fig.add_trace(go.Cone( x=grid_x.flatten(), y=grid_y.flatten(), z=mag_phi.flatten(), u=-grad_x.flatten(), v=-grad_y.flatten(), w=np.full_like(mag_phi.flatten(), -0.1), sizemode="absolute", sizeref=0.1, anchor="tip", colorscale='Greys', showscale=False, name='Vector Flow' )) fig.update_layout( title="Interactive Holographic Field Reconstruction", scene=dict( xaxis_title="Re(z) - Encoded Signal", yaxis_title="Im(z) - Encoded Signal", zaxis_title="|Φ| - Field Magnitude" ), margin=dict(l=0, r=0, b=0, t=40) ) return fig def create_diagnostic_plots(z, w): """Creates a 2D plot showing the Aperture (z) and Lens Response (w).""" if z is None or w is None: return go.Figure(layout={"title": "Not enough data for diagnostic plots"}) fig = go.Figure() # Aperture (Encoded Signal) fig.add_trace(go.Scatter( x=np.real(z), y=np.imag(z), mode='markers', marker=dict(size=5, color='blue', opacity=0.6), name='Aperture (z)' )) # Lens Response fig.add_trace(go.Scatter( x=np.real(w), y=np.imag(w), mode='markers', marker=dict(size=5, color='red', opacity=0.6, symbol='x'), name='Lens Response (w)' )) fig.update_layout( title="Diagnostic View: Aperture and Lens Response", xaxis_title="Real Part", yaxis_title="Imaginary Part", legend_title="Signal Stage", margin=dict(l=20, r=20, t=60, b=20) ) return fig def create_dual_holography_plot(z1, phi1, z2, phi2, resolution, wavelength, title1="Primary", title2="Comparison"): """Creates side-by-side holographic visualizations for comparison.""" field_data1 = generate_holographic_field(z1, phi1, resolution) field_data2 = generate_holographic_field(z2, phi2, resolution) if field_data1 is None or field_data2 is None: return go.Figure(layout={"title": "Insufficient data for dual holography"}) grid_x1, grid_y1, grid_phi1 = field_data1 grid_x2, grid_y2, grid_phi2 = field_data2 mag_phi1, phase_phi1 = np.abs(grid_phi1), np.angle(grid_phi1) mag_phi2, phase_phi2 = np.abs(grid_phi2), np.angle(grid_phi2) # Wavelength to colorscale mapping def wavelength_to_rgb(wl): if 380 <= wl < 440: return f'rgb({int(-(wl - 440) / (440 - 380) * 255)}, 0, 255)' elif 440 <= wl < 495: return f'rgb(0, {int((wl - 440) / (495 - 440) * 255)}, 255)' elif 495 <= wl < 570: return f'rgb(0, 255, {int(-(wl - 570) / (570 - 495) * 255)})' elif 570 <= wl < 590: return f'rgb({int((wl - 570) / (590 - 570) * 255)}, 255, 0)' elif 590 <= wl < 620: return f'rgb(255, {int(-(wl - 620) / (620 - 590) * 255)}, 0)' elif 620 <= wl <= 750: return 'rgb(255, 0, 0)' return 'rgb(255,255,255)' mid_color = wavelength_to_rgb(wavelength) custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']] fig = make_subplots( rows=1, cols=2, specs=[[{'type': 'scene'}, {'type': 'scene'}]], subplot_titles=[title1, title2] ) # Left plot (Primary) fig.add_trace(go.Surface( x=grid_x1, y=grid_y1, z=mag_phi1, surfacecolor=phase_phi1, colorscale=custom_colorscale, cmin=-np.pi, cmax=np.pi, showscale=False, name=title1, contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True) ), row=1, col=1) # Right plot (Comparison) fig.add_trace(go.Surface( x=grid_x2, y=grid_y2, z=mag_phi2, surfacecolor=phase_phi2, colorscale=custom_colorscale, cmin=-np.pi, cmax=np.pi, showscale=False, name=title2, contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True) ), row=1, col=2) # Add data points if z1 is not None and phi1 is not None: fig.add_trace(go.Scatter3d( x=np.real(z1), y=np.imag(z1), z=np.abs(phi1) + 0.05, mode='markers', marker=dict(size=3, color='black', symbol='x'), name=f'{title1} Points', showlegend=False ), row=1, col=1) if z2 is not None and phi2 is not None: fig.add_trace(go.Scatter3d( x=np.real(z2), y=np.imag(z2), z=np.abs(phi2) + 0.05, mode='markers', marker=dict(size=3, color='black', symbol='x'), name=f'{title2} Points', showlegend=False ), row=1, col=2) fig.update_layout( title="Side-by-Side Cross-Species Holographic Comparison", scene=dict( xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Φ|", camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)) ), scene2=dict( xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Φ|", camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)) ), margin=dict(l=0, r=0, b=0, t=60), height=600 ) return fig def create_dual_diagnostic_plots(z1, w1, z2, w2, title1="Primary", title2="Comparison"): """Creates side-by-side diagnostic plots for cross-species comparison.""" fig = make_subplots( rows=1, cols=2, subplot_titles=[f"{title1}: Aperture & Lens Response", f"{title2}: Aperture & Lens Response"] ) if z1 is not None and w1 is not None: # Primary aperture and response fig.add_trace(go.Scatter( x=np.real(z1), y=np.imag(z1), mode='markers', marker=dict(size=5, color='blue', opacity=0.6), name=f'{title1} Aperture', showlegend=True ), row=1, col=1) fig.add_trace(go.Scatter( x=np.real(w1), y=np.imag(w1), mode='markers', marker=dict(size=5, color='red', opacity=0.6, symbol='x'), name=f'{title1} Response', showlegend=True ), row=1, col=1) if z2 is not None and w2 is not None: # Comparison aperture and response fig.add_trace(go.Scatter( x=np.real(z2), y=np.imag(z2), mode='markers', marker=dict(size=5, color='darkblue', opacity=0.6), name=f'{title2} Aperture', showlegend=True ), row=1, col=2) fig.add_trace(go.Scatter( x=np.real(w2), y=np.imag(w2), mode='markers', marker=dict(size=5, color='darkred', opacity=0.6, symbol='x'), name=f'{title2} Response', showlegend=True ), row=1, col=2) fig.update_layout( title="Cross-Species Diagnostic Comparison", height=400, margin=dict(l=20, r=20, t=60, b=20) ) fig.update_xaxes(title_text="Real Part", row=1, col=1) fig.update_yaxes(title_text="Imaginary Part", row=1, col=1) fig.update_xaxes(title_text="Real Part", row=1, col=2) fig.update_yaxes(title_text="Imaginary Part", row=1, col=2) return fig def create_entropy_geometry_plot(phi: np.ndarray): """Creates a plot showing magnitude/phase distributions and their entropy.""" if phi is None or len(phi) < 2: return go.Figure(layout={"title": "Not enough data for entropy analysis"}) magnitudes = np.abs(phi) phases = np.angle(phi) # Calculate entropy mag_hist, _ = np.histogram(magnitudes, bins='auto', density=True) phase_hist, _ = np.histogram(phases, bins='auto', density=True) mag_entropy = shannon_entropy(mag_hist) phase_entropy = shannon_entropy(phase_hist) fig = make_subplots(rows=1, cols=2, subplot_titles=( f"Magnitude Distribution (Entropy: {mag_entropy:.3f})", f"Phase Distribution (Entropy: {phase_entropy:.3f})" )) fig.add_trace(go.Histogram(x=magnitudes, name='Magnitude', nbinsx=50), row=1, col=1) fig.add_trace(go.Histogram(x=phases, name='Phase', nbinsx=50), row=1, col=2) fig.update_layout( title_text="Informational-Entropy Geometry", showlegend=False, bargap=0.1, margin=dict(l=20, r=20, t=60, b=20) ) fig.update_xaxes(title_text="|Φ|", row=1, col=1) fig.update_yaxes(title_text="Count", row=1, col=1) fig.update_xaxes(title_text="angle(Φ)", row=1, col=2) fig.update_yaxes(title_text="Count", row=1, col=2) return fig # --------------------------------------------------------------- # Gradio UI # --------------------------------------------------------------- with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="cyan")) as demo: gr.Markdown("# Exhaustive CMT Explorer for Interspecies Communication v3.2") file_choices = df_combined["filepath"].astype(str).tolist() default_primary = file_choices[0] if file_choices else "" with gr.Tabs(): with gr.TabItem("🌌 Universal Manifold Explorer"): gr.Markdown(""" # 🎯 **First Universal Interspecies Communication Map** *Discover the hidden mathematical geometry underlying human and dog communication* """) with gr.Row(): with gr.Column(scale=1): gr.Markdown("### 🔬 **Analysis Controls**") # Species filtering species_filter = gr.CheckboxGroup( label="Species Selection", choices=["Human", "Dog"], value=["Human", "Dog"], info="Select which species to display" ) # Emotional state filtering emotion_filter = gr.CheckboxGroup( label="Emotional States", choices=list(df_combined['label'].unique()), value=list(df_combined['label'].unique()), info="Filter by emotional expression" ) # CMT Lens selection for coloring lens_selector = gr.Dropdown( label="Mathematical Lens View", choices=["gamma", "zeta", "airy", "bessel"], value="gamma", info="Choose which mathematical lens to use for analysis" ) # Advanced filtering sliders with gr.Accordion("🎛️ Advanced CMT Filters", open=False): alpha_range = gr.RangeSlider( label="CMT Alpha Range (Geometric Consistency)", minimum=0, maximum=1, value=[0, 1], step=0.01, info="Filter by geometric consistency measure" ) srl_range = gr.RangeSlider( label="SRL Range (Complexity Level)", minimum=0, maximum=100, value=[0, 100], step=1, info="Filter by spike response level (complexity)" ) feature_magnitude = gr.RangeSlider( label="Feature Magnitude Range", minimum=-3, maximum=3, value=[-3, 3], step=0.1, info="Filter by overall feature strength" ) # Visualization options with gr.Accordion("🎨 Visualization Options", open=True): point_size = gr.Slider( label="Point Size", minimum=2, maximum=15, value=6, step=1 ) show_species_boundary = gr.Checkbox( label="Show Species Boundary", value=True, info="Display geometric boundary between species" ) show_trajectories = gr.Checkbox( label="Show Communication Trajectories", value=False, info="Display paths between related vocalizations" ) color_scheme = gr.Dropdown( label="Color Scheme", choices=["Species", "Emotion", "CMT_Alpha", "CMT_SRL", "Cluster"], value="Species", info="Choose coloring strategy" ) # Real-time analysis with gr.Accordion("🔍 Real-Time Analysis", open=False): analysis_button = gr.Button("🔬 Analyze Selected Region", variant="primary") selected_info = gr.HTML( label="Selection Analysis", value="Select points on the manifold for detailed analysis" ) with gr.Column(scale=3): # Main 3D manifold plot manifold_plot = gr.Plot( label="Universal Communication Manifold", height=600 ) # Statistics panel below the plot with gr.Row(): with gr.Column(): species_stats = gr.HTML( label="Species Statistics", value="" ) with gr.Column(): boundary_stats = gr.HTML( label="Boundary Analysis", value="" ) with gr.Column(): similarity_stats = gr.HTML( label="Cross-Species Similarity", value="" ) # Secondary analysis views with gr.Row(): with gr.Column(): # 2D projection plot projection_2d = gr.Plot( label="2D Projection View", height=400 ) with gr.Column(): # Density heatmap density_plot = gr.Plot( label="Communication Density Map", height=400 ) # Bottom analysis panel with gr.Row(): with gr.Column(): # Feature distribution plots feature_distributions = gr.Plot( label="CMT Feature Distributions", height=300 ) with gr.Column(): # Correlation matrix correlation_matrix = gr.Plot( label="Cross-Species Feature Correlations", height=300 ) # Wire up all the interactive components manifold_inputs = [ species_filter, emotion_filter, lens_selector, alpha_range, srl_range, feature_magnitude, point_size, show_species_boundary, show_trajectories, color_scheme ] manifold_outputs = [ manifold_plot, projection_2d, density_plot, feature_distributions, correlation_matrix, species_stats, boundary_stats, similarity_stats ] # Set up event handlers for real-time updates for component in manifold_inputs: component.change( update_manifold_visualization, inputs=manifold_inputs, outputs=manifold_outputs ) # Initialize the plots with default values demo.load( lambda: update_manifold_visualization( ["Human", "Dog"], # species_selection list(df_combined['label'].unique()), # emotion_selection "gamma", # lens_selection [0, 1], # alpha_range [0, 100], # srl_range [-3, 3], # feature_range 6, # point_size True, # show_boundary False, # show_trajectories "Species" # color_scheme ), outputs=manifold_outputs ) with gr.TabItem("Interactive Holography"): with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Cross-Species Holography Controls") # Species selection and automatic pairing species_dropdown = gr.Dropdown( label="Select Species", choices=["Dog", "Human"], value="Dog" ) # Primary file selection (filtered by species) dog_files = df_combined[df_combined["source"] == "Dog"]["filepath"].astype(str).tolist() human_files = df_combined[df_combined["source"] == "Human"]["filepath"].astype(str).tolist() primary_dropdown = gr.Dropdown( label="Primary Audio File", choices=dog_files, value=dog_files[0] if dog_files else None ) # Automatically found neighbor (from opposite species) neighbor_dropdown = gr.Dropdown( label="Auto-Found Cross-Species Neighbor", choices=human_files, value=human_files[0] if human_files else None, interactive=True # Allow manual override ) holo_lens_dropdown = gr.Dropdown(label="CMT Lens", choices=["gamma", "zeta", "airy", "bessel"], value="gamma") holo_resolution_slider = gr.Slider(label="Field Resolution", minimum=20, maximum=100, step=5, value=40) holo_wavelength_slider = gr.Slider(label="Illumination Wavelength (nm)", minimum=380, maximum=750, step=5, value=550) # Information panels primary_info_html = gr.HTML(label="Primary Audio Info") neighbor_info_html = gr.HTML(label="Neighbor Audio Info") # Audio players primary_audio_out = gr.Audio(label="Primary Audio") neighbor_audio_out = gr.Audio(label="Neighbor Audio") with gr.Column(scale=2): dual_holography_plot = gr.Plot(label="Side-by-Side Holographic Comparison") dual_diagnostic_plot = gr.Plot(label="Cross-Species Diagnostic Comparison") def update_file_choices(species): """Update the primary file dropdown based on selected species.""" species_files = df_combined[df_combined["source"] == species]["filepath"].astype(str).tolist() return species_files def update_cross_species_view(species, primary_file, neighbor_file, lens, resolution, wavelength): if not primary_file: empty_fig = go.Figure(layout={"title": "Please select a primary file."}) return empty_fig, empty_fig, "", "", None, None # Get primary row primary_row = df_combined[ (df_combined["filepath"] == primary_file) & (df_combined["source"] == species) ].iloc[0] if len(df_combined[ (df_combined["filepath"] == primary_file) & (df_combined["source"] == species) ]) > 0 else None if primary_row is None: empty_fig = go.Figure(layout={"title": "Primary file not found."}) return empty_fig, empty_fig, "", "", None, None, [] # Find cross-species neighbor if not manually selected if not neighbor_file: neighbor_row = find_nearest_cross_species_neighbor(primary_row, df_combined) if neighbor_row is not None: neighbor_file = neighbor_row['filepath'] else: # Get manually selected neighbor opposite_species = 'Human' if species == 'Dog' else 'Dog' neighbor_row = df_combined[ (df_combined["filepath"] == neighbor_file) & (df_combined["source"] == opposite_species) ].iloc[0] if len(df_combined[ (df_combined["filepath"] == neighbor_file) & (df_combined["source"] == opposite_species) ]) > 0 else None # Get CMT data directly from CSV (no audio processing needed!) print(f"📊 Using preprocessed CMT data for: {primary_row['filepath']} ({lens} lens)") primary_cmt = get_cmt_data_from_csv(primary_row, lens) neighbor_cmt = None if neighbor_row is not None: print(f"📊 Using preprocessed CMT data for: {neighbor_row['filepath']} ({lens} lens)") neighbor_cmt = get_cmt_data_from_csv(neighbor_row, lens) # Get audio file paths only for playback primary_fp = resolve_audio_path(primary_row) neighbor_fp = resolve_audio_path(neighbor_row) if neighbor_row is not None else None # Create visualizations if primary_cmt and neighbor_cmt: primary_title = f"{species}: {primary_row.get('label', 'Unknown')}" neighbor_title = f"{neighbor_row['source']}: {neighbor_row.get('label', 'Unknown')}" dual_holo_fig = create_dual_holography_plot( primary_cmt["z"], primary_cmt["phi"], neighbor_cmt["z"], neighbor_cmt["phi"], resolution, wavelength, primary_title, neighbor_title ) dual_diag_fig = create_dual_diagnostic_plots( primary_cmt["z"], primary_cmt["w"], neighbor_cmt["z"], neighbor_cmt["w"], primary_title, neighbor_title ) else: dual_holo_fig = go.Figure(layout={"title": "Error processing audio files"}) dual_diag_fig = go.Figure(layout={"title": "Error processing audio files"}) # Build info strings with CMT diagnostic values primary_info = f""" Primary: {primary_row['filepath']}