import os import warnings import numpy as np import pandas as pd import plotly.graph_objects as go from plotly.subplots import make_subplots from umap import UMAP from sklearn.cluster import KMeans from scipy.stats import entropy as shannon_entropy from scipy import special as sp_special from scipy.interpolate import griddata from sklearn.metrics.pairwise import cosine_similarity from scipy.spatial.distance import cdist import soundfile as sf import gradio as gr # ================================================================ # Unified Communication Manifold Explorer & CMT Visualizer v4.0 # - Adds side-by-side comparison capabilities from HTML draft # - Implements cross-species neighbor finding for grammar mapping # - Separates human and dog audio with automatic pairing # - Enhanced dual visualization for comparative analysis # ================================================================ # - Adds Interactive Holography tab for full field reconstruction. # - Interpolates the continuous CMT state-space (Φ field). # - Visualizes topology, vector flow, and phase interference. # - Adds informational-entropy-geometry visualization. # - Prioritizes specific Colab paths for data loading. # ================================================================ warnings.filterwarnings("ignore", category=FutureWarning) warnings.filterwarnings("ignore", category=UserWarning) print("Initializing the Interactive CMT Holography Explorer...") # --------------------------------------------------------------- # Data setup # --------------------------------------------------------------- # Paths for local execution (used for dummy data generation fallback) BASE_DIR = os.path.abspath(os.getcwd()) DATA_DIR = os.path.join(BASE_DIR, "data") DOG_DIR = os.path.join(DATA_DIR, "dog") HUMAN_DIR = os.path.join(DATA_DIR, "human") # Explicit paths for Colab environment CSV_DOG = "/content/cmt_dog_sound_analysis.csv" CSV_HUMAN = "/content/cmt_human_speech_analysis.csv" # These are for creating dummy audio files if needed os.makedirs(DOG_DIR, exist_ok=True) os.makedirs(os.path.join(HUMAN_DIR, "Actor_01"), exist_ok=True) # --- Audio Data Configuration (Must match your data source locations) --- DOG_AUDIO_BASE_PATH = '/content/drive/MyDrive/combined' HUMAN_AUDIO_BASE_PATH = '/content/drive/MyDrive/human' # --------------------------------------------------------------- # Cross-Species Analysis Functions # --------------------------------------------------------------- def find_nearest_cross_species_neighbor(selected_row, df_combined, n_neighbors=5): """ Finds the closest neighbor from the opposite species using feature similarity. This enables cross-species pattern mapping for grammar development. """ selected_source = selected_row['source'] opposite_source = 'Human' if selected_source == 'Dog' else 'Dog' # Get feature columns for similarity calculation feature_cols = [c for c in df_combined.columns if c.startswith("feature_")] if not feature_cols: # Fallback to any numeric columns if no feature columns exist numeric_cols = df_combined.select_dtypes(include=[np.number]).columns feature_cols = [c for c in numeric_cols if c not in ['x', 'y', 'z', 'cluster']] if not feature_cols: # Random selection if no suitable features found opposite_species_data = df_combined[df_combined['source'] == opposite_source] if len(opposite_species_data) > 0: return opposite_species_data.iloc[0] return None # Extract features for the selected row selected_features = selected_row[feature_cols].values.reshape(1, -1) selected_features = np.nan_to_num(selected_features) # Get all rows from the opposite species opposite_species_data = df_combined[df_combined['source'] == opposite_source] if len(opposite_species_data) == 0: return None # Extract features for opposite species opposite_features = opposite_species_data[feature_cols].values opposite_features = np.nan_to_num(opposite_features) # Calculate cosine similarity (better for high-dimensional feature spaces) similarities = cosine_similarity(selected_features, opposite_features)[0] # Find the index of the most similar neighbor most_similar_idx = np.argmax(similarities) nearest_neighbor = opposite_species_data.iloc[most_similar_idx] return nearest_neighbor # --------------------------------------------------------------- # Load datasets (Colab-first paths) # --------------------------------------------------------------- if os.path.exists(CSV_DOG) and os.path.exists(CSV_HUMAN): print(f"Found existing data files. Loading from:\n- {CSV_DOG}\n- {CSV_HUMAN}") df_dog = pd.read_csv(CSV_DOG) df_human = pd.read_csv(CSV_HUMAN) print("Successfully loaded data from specified paths.") else: print("Could not find one or both CSV files. Generating and using in-memory dummy data.") # This section is for DUMMY DATA GENERATION ONLY. # It runs if the primary CSVs are not found and does NOT write files. n_dummy_items_per_category = 50 rng = np.random.default_rng(42) dog_labels = ["bark", "growl", "whine", "pant"] * (n_dummy_items_per_category // 4) human_labels = ["speech", "laugh", "cry", "shout"] * (n_dummy_items_per_category // 4) dog_rows = { "feature_1": rng.random(n_dummy_items_per_category), "feature_2": rng.random(n_dummy_items_per_category), "feature_3": rng.random(n_dummy_items_per_category), "label": dog_labels, "filepath": [f"dog_{i}.wav" for i in range(n_dummy_items_per_category)], "diag_srl_gamma": rng.uniform(0.5, 5.0, n_dummy_items_per_category), "diag_alpha_gamma": rng.uniform(0.1, 2.0, n_dummy_items_per_category), "zeta_curvature": rng.uniform(-1, 1, n_dummy_items_per_category), "torsion_index": rng.uniform(0, 1, n_dummy_items_per_category), } human_rows = { "feature_1": rng.random(n_dummy_items_per_category), "feature_2": rng.random(n_dummy_items_per_category), "feature_3": rng.random(n_dummy_items_per_category), "label": human_labels, "filepath": [f"human_{i}.wav" for i in range(n_dummy_items_per_category)], "diag_srl_gamma": rng.uniform(0.5, 5.0, n_dummy_items_per_category), "diag_alpha_gamma": rng.uniform(0.1, 2.0, n_dummy_items_per_category), "zeta_curvature": rng.uniform(-1, 1, n_dummy_items_per_category), "torsion_index": rng.uniform(0, 1, n_dummy_items_per_category), } df_dog = pd.DataFrame(dog_rows) df_human = pd.DataFrame(human_rows) # We still create dummy audio files for the UI to use if needed sr = 22050 dur = 2.0 t = np.linspace(0, dur, int(sr * dur), endpoint=False) for i in range(n_dummy_items_per_category): tone_freq = 220 + 20 * (i % 5) audio = 0.1 * np.sin(2 * np.pi * tone_freq * t) + 0.02 * rng.standard_normal(t.shape) audio = audio / (np.max(np.abs(audio)) + 1e-9) dog_label = dog_labels[i] dog_label_dir = os.path.join(DOG_DIR, dog_label) os.makedirs(dog_label_dir, exist_ok=True) sf.write(os.path.join(dog_label_dir, f"dog_{i}.wav"), audio, sr) sf.write(os.path.join(HUMAN_DIR, "Actor_01", f"human_{i}.wav"), audio, sr) print(f"Loaded {len(df_dog)} dog rows and {len(df_human)} human rows.") df_dog["source"], df_human["source"] = "Dog", "Human" df_combined = pd.concat([df_dog, df_human], ignore_index=True) # --------------------------------------------------------------- # Expanded CMT implementation # --------------------------------------------------------------- class ExpandedCMT: def __init__(self): self.c1, self.c2 = 0.587 + 1.223j, -0.994 + 0.0j # A large but finite number to represent the pole at z=1 for Zeta self.ZETA_POLE_REGULARIZATION = 1e6 - 1e6j self.lens_library = { "gamma": sp_special.gamma, "zeta": self._regularized_zeta, # Use the robust zeta function "airy": lambda z: sp_special.airy(z)[0], "bessel": lambda z: sp_special.jv(0, z), } def _regularized_zeta(self, z: np.ndarray) -> np.ndarray: """ A wrapper around scipy's zeta function to handle the pole at z=1. """ # Create a copy to avoid modifying the original array z_out = np.copy(z).astype(np.complex128) # Find where the real part is close to 1 and the imaginary part is close to 0 pole_condition = np.isclose(np.real(z), 1.0) & np.isclose(np.imag(z), 0.0) # Apply the standard zeta function to non-pole points non_pole_points = ~pole_condition z_out[non_pole_points] = sp_special.zeta(z[non_pole_points], 1) # Apply the regularization constant to the pole points z_out[pole_condition] = self.ZETA_POLE_REGULARIZATION return z_out def _robust_normalize(self, signal: np.ndarray) -> np.ndarray: if signal.size == 0: return signal Q1, Q3 = np.percentile(signal, [25, 75]) IQR = Q3 - Q1 if IQR < 1e-9: median, mad = np.median(signal), np.median(np.abs(signal - np.median(signal))) return np.zeros_like(signal) if mad < 1e-9 else (signal - median) / (mad + 1e-9) lower, upper = Q1 - 1.5 * IQR, Q3 + 1.5 * IQR clipped = np.clip(signal, lower, upper) s_min, s_max = np.min(clipped), np.max(clipped) return np.zeros_like(signal) if s_max == s_min else 2.0 * (clipped - s_min) / (s_max - s_min) - 1.0 def _encode(self, signal: np.ndarray) -> np.ndarray: N = len(signal) if N == 0: return signal.astype(np.complex128) i = np.arange(N) theta = 2.0 * np.pi * i / N f_k, A_k = np.array([271, 341, 491]), np.array([0.033, 0.050, 0.100]) phi = np.sum(A_k[:, None] * np.sin(2.0 * np.pi * f_k[:, None] * i / N), axis=0) Theta = theta + phi exp_iTheta = np.exp(1j * Theta) g, m = signal * exp_iTheta, np.abs(signal) * exp_iTheta return 0.5 * g + 0.5 * m def _apply_lens(self, encoded_signal: np.ndarray, lens_type: str): lens_fn = self.lens_library.get(lens_type) if not lens_fn: raise ValueError(f"Lens '{lens_type}' not found.") with np.errstate(all="ignore"): w = lens_fn(encoded_signal) phi_trajectory = self.c1 * np.angle(w) + self.c2 * np.abs(encoded_signal) finite_mask = np.isfinite(phi_trajectory) return phi_trajectory[finite_mask], w[finite_mask], encoded_signal[finite_mask], len(encoded_signal), len(phi_trajectory[finite_mask]) # --------------------------------------------------------------- # Feature preparation and UMAP embedding # --------------------------------------------------------------- feature_cols = [c for c in df_combined.columns if c.startswith("feature_")] features = np.nan_to_num(df_combined[feature_cols].to_numpy()) reducer = UMAP(n_components=3, n_neighbors=15, min_dist=0.1, random_state=42) df_combined[["x", "y", "z"]] = reducer.fit_transform(features) kmeans = KMeans(n_clusters=max(4, min(12, int(np.sqrt(len(df_combined))))), random_state=42, n_init=10) df_combined["cluster"] = kmeans.fit_predict(features) df_combined["chaos_score"] = np.log1p(df_combined.get("diag_srl_gamma", 0)) / (df_combined.get("diag_alpha_gamma", 1) + 1e-2) # --------------------------------------------------------------- # Core Visualization and Analysis Functions # --------------------------------------------------------------- def resolve_audio_path(row: pd.Series) -> str: """ Intelligently reconstructs the full path to an audio file based on the logic from the data generation scripts. """ basename = str(row.get("filepath", "")) source = row.get("source", "") label = row.get("label", "") # For "Dog" data, the structure is: {base_path}/{label}/{filename} if source == "Dog": expected_path = os.path.join(DOG_AUDIO_BASE_PATH, label, basename) if os.path.exists(expected_path): return expected_path # For "Human" data, we must search within all "Actor_XX" subfolders elif source == "Human": if os.path.isdir(HUMAN_AUDIO_BASE_PATH): for actor_folder in os.listdir(HUMAN_AUDIO_BASE_PATH): if actor_folder.startswith("Actor_"): expected_path = os.path.join(HUMAN_AUDIO_BASE_PATH, actor_folder, basename) if os.path.exists(expected_path): return expected_path # Fallback for dummy data or other cases if os.path.exists(basename): return basename # If all else fails, return the original basename and let it error out with a clear message return basename def get_cmt_data(filepath: str, lens: str): try: y, _ = sf.read(filepath) if y.ndim > 1: y = np.mean(y, axis=1) except Exception as e: print(f"Error reading audio file {filepath}: {e}") return None cmt = ExpandedCMT() normalized = cmt._robust_normalize(y) encoded = cmt._encode(normalized) # The _apply_lens function now returns additional diagnostic info phi, w, z, original_count, final_count = cmt._apply_lens(encoded, lens) return { "phi": phi, "w": w, "z": z, "original_count": original_count, "final_count": final_count } def generate_holographic_field(z: np.ndarray, phi: np.ndarray, resolution: int): if z is None or phi is None or len(z) < 4: return None points = np.vstack([np.real(z), np.imag(z)]).T grid_x, grid_y = np.mgrid[ np.min(points[:,0]):np.max(points[:,0]):complex(0, resolution), np.min(points[:,1]):np.max(points[:,1]):complex(0, resolution) ] grid_phi_real = griddata(points, np.real(phi), (grid_x, grid_y), method='cubic') grid_phi_imag = griddata(points, np.imag(phi), (grid_x, grid_y), method='cubic') grid_phi = np.nan_to_num(grid_phi_real + 1j * grid_phi_imag) return grid_x, grid_y, grid_phi def create_holography_plot(z, phi, resolution, wavelength): field_data = generate_holographic_field(z, phi, resolution) if field_data is None: return go.Figure(layout={"title": "Not enough data for holography"}) grid_x, grid_y, grid_phi = field_data mag_phi = np.abs(grid_phi) phase_phi = np.angle(grid_phi) # --- Wavelength to Colorscale Mapping --- def wavelength_to_rgb(wl): # Simple approximation to map visible spectrum to RGB if 380 <= wl < 440: return f'rgb({-(wl - 440) / (440 - 380) * 255}, 0, 255)' # Violet elif 440 <= wl < 495: return f'rgb(0, {(wl - 440) / (495 - 440) * 255}, 255)' # Blue elif 495 <= wl < 570: return f'rgb(0, 255, {-(wl - 570) / (570 - 495) * 255})' # Green elif 570 <= wl < 590: return f'rgb({(wl - 570) / (590 - 570) * 255}, 255, 0)' # Yellow elif 590 <= wl < 620: return f'rgb(255, {-(wl - 620) / (620 - 590) * 255}, 0)' # Orange elif 620 <= wl <= 750: return f'rgb(255, 0, 0)' # Red return 'rgb(255,255,255)' mid_color = wavelength_to_rgb(wavelength) custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']] fig = go.Figure() # 1. The Holographic Surface (Topology + Phase Interference) fig.add_trace(go.Surface( x=grid_x, y=grid_y, z=mag_phi, surfacecolor=phase_phi, colorscale=custom_colorscale, cmin=-np.pi, cmax=np.pi, colorbar=dict(title='Φ Phase'), name='Holographic Field', contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True, highlightwidth=10) )) # 2. The original data points projected onto the surface fig.add_trace(go.Scatter3d( x=np.real(z), y=np.imag(z), z=np.abs(phi) + 0.05, # slight offset mode='markers', marker=dict(size=3, color='black', symbol='x'), name='Data Points' )) # 3. The Vector Flow Field (using cones for direction) grad_y, grad_x = np.gradient(mag_phi) fig.add_trace(go.Cone( x=grid_x.flatten(), y=grid_y.flatten(), z=mag_phi.flatten(), u=-grad_x.flatten(), v=-grad_y.flatten(), w=np.full_like(mag_phi.flatten(), -0.1), sizemode="absolute", sizeref=0.1, anchor="tip", colorscale='Greys', showscale=False, name='Vector Flow' )) fig.update_layout( title="Interactive Holographic Field Reconstruction", scene=dict( xaxis_title="Re(z) - Encoded Signal", yaxis_title="Im(z) - Encoded Signal", zaxis_title="|Φ| - Field Magnitude" ), margin=dict(l=0, r=0, b=0, t=40) ) return fig def create_diagnostic_plots(z, w): """Creates a 2D plot showing the Aperture (z) and Lens Response (w).""" if z is None or w is None: return go.Figure(layout={"title": "Not enough data for diagnostic plots"}) fig = go.Figure() # Aperture (Encoded Signal) fig.add_trace(go.Scatter( x=np.real(z), y=np.imag(z), mode='markers', marker=dict(size=5, color='blue', opacity=0.6), name='Aperture (z)' )) # Lens Response fig.add_trace(go.Scatter( x=np.real(w), y=np.imag(w), mode='markers', marker=dict(size=5, color='red', opacity=0.6, symbol='x'), name='Lens Response (w)' )) fig.update_layout( title="Diagnostic View: Aperture and Lens Response", xaxis_title="Real Part", yaxis_title="Imaginary Part", legend_title="Signal Stage", margin=dict(l=20, r=20, t=60, b=20) ) return fig def create_dual_holography_plot(z1, phi1, z2, phi2, resolution, wavelength, title1="Primary", title2="Comparison"): """Creates side-by-side holographic visualizations for comparison.""" field_data1 = generate_holographic_field(z1, phi1, resolution) field_data2 = generate_holographic_field(z2, phi2, resolution) if field_data1 is None or field_data2 is None: return go.Figure(layout={"title": "Insufficient data for dual holography"}) grid_x1, grid_y1, grid_phi1 = field_data1 grid_x2, grid_y2, grid_phi2 = field_data2 mag_phi1, phase_phi1 = np.abs(grid_phi1), np.angle(grid_phi1) mag_phi2, phase_phi2 = np.abs(grid_phi2), np.angle(grid_phi2) # Wavelength to colorscale mapping def wavelength_to_rgb(wl): if 380 <= wl < 440: return f'rgb({int(-(wl - 440) / (440 - 380) * 255)}, 0, 255)' elif 440 <= wl < 495: return f'rgb(0, {int((wl - 440) / (495 - 440) * 255)}, 255)' elif 495 <= wl < 570: return f'rgb(0, 255, {int(-(wl - 570) / (570 - 495) * 255)})' elif 570 <= wl < 590: return f'rgb({int((wl - 570) / (590 - 570) * 255)}, 255, 0)' elif 590 <= wl < 620: return f'rgb(255, {int(-(wl - 620) / (620 - 590) * 255)}, 0)' elif 620 <= wl <= 750: return 'rgb(255, 0, 0)' return 'rgb(255,255,255)' mid_color = wavelength_to_rgb(wavelength) custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']] fig = make_subplots( rows=1, cols=2, specs=[[{'type': 'scene'}, {'type': 'scene'}]], subplot_titles=[title1, title2] ) # Left plot (Primary) fig.add_trace(go.Surface( x=grid_x1, y=grid_y1, z=mag_phi1, surfacecolor=phase_phi1, colorscale=custom_colorscale, cmin=-np.pi, cmax=np.pi, showscale=False, name=title1, contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True) ), row=1, col=1) # Right plot (Comparison) fig.add_trace(go.Surface( x=grid_x2, y=grid_y2, z=mag_phi2, surfacecolor=phase_phi2, colorscale=custom_colorscale, cmin=-np.pi, cmax=np.pi, showscale=False, name=title2, contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True) ), row=1, col=2) # Add data points if z1 is not None and phi1 is not None: fig.add_trace(go.Scatter3d( x=np.real(z1), y=np.imag(z1), z=np.abs(phi1) + 0.05, mode='markers', marker=dict(size=3, color='black', symbol='x'), name=f'{title1} Points', showlegend=False ), row=1, col=1) if z2 is not None and phi2 is not None: fig.add_trace(go.Scatter3d( x=np.real(z2), y=np.imag(z2), z=np.abs(phi2) + 0.05, mode='markers', marker=dict(size=3, color='black', symbol='x'), name=f'{title2} Points', showlegend=False ), row=1, col=2) fig.update_layout( title="Side-by-Side Cross-Species Holographic Comparison", scene=dict( xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Φ|", camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)) ), scene2=dict( xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Φ|", camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)) ), margin=dict(l=0, r=0, b=0, t=60), height=600 ) return fig def create_dual_diagnostic_plots(z1, w1, z2, w2, title1="Primary", title2="Comparison"): """Creates side-by-side diagnostic plots for cross-species comparison.""" fig = make_subplots( rows=1, cols=2, subplot_titles=[f"{title1}: Aperture & Lens Response", f"{title2}: Aperture & Lens Response"] ) if z1 is not None and w1 is not None: # Primary aperture and response fig.add_trace(go.Scatter( x=np.real(z1), y=np.imag(z1), mode='markers', marker=dict(size=5, color='blue', opacity=0.6), name=f'{title1} Aperture', showlegend=True ), row=1, col=1) fig.add_trace(go.Scatter( x=np.real(w1), y=np.imag(w1), mode='markers', marker=dict(size=5, color='red', opacity=0.6, symbol='x'), name=f'{title1} Response', showlegend=True ), row=1, col=1) if z2 is not None and w2 is not None: # Comparison aperture and response fig.add_trace(go.Scatter( x=np.real(z2), y=np.imag(z2), mode='markers', marker=dict(size=5, color='darkblue', opacity=0.6), name=f'{title2} Aperture', showlegend=True ), row=1, col=2) fig.add_trace(go.Scatter( x=np.real(w2), y=np.imag(w2), mode='markers', marker=dict(size=5, color='darkred', opacity=0.6, symbol='x'), name=f'{title2} Response', showlegend=True ), row=1, col=2) fig.update_layout( title="Cross-Species Diagnostic Comparison", height=400, margin=dict(l=20, r=20, t=60, b=20) ) fig.update_xaxes(title_text="Real Part", row=1, col=1) fig.update_yaxes(title_text="Imaginary Part", row=1, col=1) fig.update_xaxes(title_text="Real Part", row=1, col=2) fig.update_yaxes(title_text="Imaginary Part", row=1, col=2) return fig def create_entropy_geometry_plot(phi: np.ndarray): """Creates a plot showing magnitude/phase distributions and their entropy.""" if phi is None or len(phi) < 2: return go.Figure(layout={"title": "Not enough data for entropy analysis"}) magnitudes = np.abs(phi) phases = np.angle(phi) # Calculate entropy mag_hist, _ = np.histogram(magnitudes, bins='auto', density=True) phase_hist, _ = np.histogram(phases, bins='auto', density=True) mag_entropy = shannon_entropy(mag_hist) phase_entropy = shannon_entropy(phase_hist) fig = make_subplots(rows=1, cols=2, subplot_titles=( f"Magnitude Distribution (Entropy: {mag_entropy:.3f})", f"Phase Distribution (Entropy: {phase_entropy:.3f})" )) fig.add_trace(go.Histogram(x=magnitudes, name='Magnitude', nbinsx=50), row=1, col=1) fig.add_trace(go.Histogram(x=phases, name='Phase', nbinsx=50), row=1, col=2) fig.update_layout( title_text="Informational-Entropy Geometry", showlegend=False, bargap=0.1, margin=dict(l=20, r=20, t=60, b=20) ) fig.update_xaxes(title_text="|Φ|", row=1, col=1) fig.update_yaxes(title_text="Count", row=1, col=1) fig.update_xaxes(title_text="angle(Φ)", row=1, col=2) fig.update_yaxes(title_text="Count", row=1, col=2) return fig # --------------------------------------------------------------- # Gradio UI # --------------------------------------------------------------- with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="cyan")) as demo: gr.Markdown("# Exhaustive CMT Explorer for Interspecies Communication v3.2") file_choices = df_combined["filepath"].astype(str).tolist() default_primary = file_choices[0] if file_choices else "" with gr.Tabs(): with gr.TabItem("Unified Manifold"): gr.Plot(value=lambda: go.Figure(data=[go.Scatter3d( x=df_combined["x"], y=df_combined["y"], z=df_combined["z"], mode="markers", marker=dict(color=df_combined["cluster"], size=5, colorscale="Viridis", showscale=True, colorbar={"title": "Cluster ID"}), text=df_combined.apply(lambda r: f"{r['source']}: {r.get('label', '')}
File: {r['filepath']}", axis=1), hoverinfo="text" )], layout=dict(title="Communication Manifold (UMAP Projection)")), label="UMAP Manifold") with gr.TabItem("Interactive Holography"): with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Cross-Species Holography Controls") # Species selection and automatic pairing species_dropdown = gr.Dropdown( label="Select Species", choices=["Dog", "Human"], value="Dog" ) # Primary file selection (filtered by species) primary_dropdown = gr.Dropdown( label="Primary Audio File", choices=[], value="" ) # Automatically found neighbor (from opposite species) neighbor_dropdown = gr.Dropdown( label="Auto-Found Cross-Species Neighbor", choices=[], value="", interactive=True # Allow manual override ) holo_lens_dropdown = gr.Dropdown(label="CMT Lens", choices=["gamma", "zeta", "airy", "bessel"], value="gamma") holo_resolution_slider = gr.Slider(label="Field Resolution", minimum=20, maximum=100, step=5, value=40) holo_wavelength_slider = gr.Slider(label="Illumination Wavelength (nm)", minimum=380, maximum=750, step=5, value=550) # Information panels primary_info_html = gr.HTML(label="Primary Audio Info") neighbor_info_html = gr.HTML(label="Neighbor Audio Info") # Audio players primary_audio_out = gr.Audio(label="Primary Audio") neighbor_audio_out = gr.Audio(label="Neighbor Audio") with gr.Column(scale=2): dual_holography_plot = gr.Plot(label="Side-by-Side Holographic Comparison") dual_diagnostic_plot = gr.Plot(label="Cross-Species Diagnostic Comparison") def update_file_choices(species): """Update the primary file dropdown based on selected species.""" species_files = df_combined[df_combined["source"] == species]["filepath"].astype(str).tolist() return gr.Dropdown.update(choices=species_files, value=species_files[0] if species_files else "") def update_cross_species_view(species, primary_file, neighbor_file, lens, resolution, wavelength): if not primary_file: empty_fig = go.Figure(layout={"title": "Please select a primary file."}) return empty_fig, empty_fig, "", "", None, None, [] # Get primary row primary_row = df_combined[ (df_combined["filepath"] == primary_file) & (df_combined["source"] == species) ].iloc[0] if len(df_combined[ (df_combined["filepath"] == primary_file) & (df_combined["source"] == species) ]) > 0 else None if primary_row is None: empty_fig = go.Figure(layout={"title": "Primary file not found."}) return empty_fig, empty_fig, "", "", None, None, [] # Find cross-species neighbor if not manually selected if not neighbor_file: neighbor_row = find_nearest_cross_species_neighbor(primary_row, df_combined) if neighbor_row is not None: neighbor_file = neighbor_row['filepath'] else: # Get manually selected neighbor opposite_species = 'Human' if species == 'Dog' else 'Dog' neighbor_row = df_combined[ (df_combined["filepath"] == neighbor_file) & (df_combined["source"] == opposite_species) ].iloc[0] if len(df_combined[ (df_combined["filepath"] == neighbor_file) & (df_combined["source"] == opposite_species) ]) > 0 else None # Get CMT data for both files primary_fp = resolve_audio_path(primary_row) primary_cmt = get_cmt_data(primary_fp, lens) neighbor_cmt = None if neighbor_row is not None: neighbor_fp = resolve_audio_path(neighbor_row) neighbor_cmt = get_cmt_data(neighbor_fp, lens) # Create visualizations if primary_cmt and neighbor_cmt: primary_title = f"{species}: {primary_row.get('label', 'Unknown')}" neighbor_title = f"{neighbor_row['source']}: {neighbor_row.get('label', 'Unknown')}" dual_holo_fig = create_dual_holography_plot( primary_cmt["z"], primary_cmt["phi"], neighbor_cmt["z"], neighbor_cmt["phi"], resolution, wavelength, primary_title, neighbor_title ) dual_diag_fig = create_dual_diagnostic_plots( primary_cmt["z"], primary_cmt["w"], neighbor_cmt["z"], neighbor_cmt["w"], primary_title, neighbor_title ) else: dual_holo_fig = go.Figure(layout={"title": "Error processing audio files"}) dual_diag_fig = go.Figure(layout={"title": "Error processing audio files"}) # Build info strings primary_info = f""" Primary: {primary_row['filepath']}
Species: {primary_row['source']}
Label: {primary_row.get('label', 'N/A')}
Data Points: {primary_cmt['final_count'] if primary_cmt else 0} / {primary_cmt['original_count'] if primary_cmt else 0} """ neighbor_info = "" if neighbor_row is not None: neighbor_info = f""" Neighbor: {neighbor_row['filepath']}
Species: {neighbor_row['source']}
Label: {neighbor_row.get('label', 'N/A')}
Data Points: {neighbor_cmt['final_count'] if neighbor_cmt else 0} / {neighbor_cmt['original_count'] if neighbor_cmt else 0} """ # Update neighbor dropdown choices opposite_species = 'Human' if species == 'Dog' else 'Dog' neighbor_choices = df_combined[df_combined["source"] == opposite_species]["filepath"].astype(str).tolist() # Audio files primary_audio = primary_fp if primary_fp and os.path.exists(primary_fp) else None neighbor_audio = neighbor_fp if neighbor_row and neighbor_fp and os.path.exists(neighbor_fp) else None return (dual_holo_fig, dual_diag_fig, primary_info, neighbor_info, primary_audio, neighbor_audio, gr.Dropdown.update(choices=neighbor_choices, value=neighbor_file if neighbor_row else "")) # Event handlers species_dropdown.change( update_file_choices, inputs=[species_dropdown], outputs=[primary_dropdown] ) cross_species_inputs = [species_dropdown, primary_dropdown, neighbor_dropdown, holo_lens_dropdown, holo_resolution_slider, holo_wavelength_slider] cross_species_outputs = [dual_holography_plot, dual_diagnostic_plot, primary_info_html, neighbor_info_html, primary_audio_out, neighbor_audio_out, neighbor_dropdown] for component in cross_species_inputs: component.change(update_cross_species_view, inputs=cross_species_inputs, outputs=cross_species_outputs) # Initialize on load demo.load(lambda: update_file_choices("Dog"), outputs=[primary_dropdown]) demo.load(update_cross_species_view, inputs=cross_species_inputs, outputs=cross_species_outputs) if __name__ == "__main__": demo.launch(share=True, debug=True)