Spaces:
Running
Running
File size: 34,323 Bytes
6f06eba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 |
import os
import warnings
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from umap import UMAP
from sklearn.cluster import KMeans
from scipy.stats import entropy as shannon_entropy
from scipy import special as sp_special
from scipy.interpolate import griddata
from sklearn.metrics.pairwise import cosine_similarity
from scipy.spatial.distance import cdist
import soundfile as sf
import gradio as gr
# ================================================================
# Unified Communication Manifold Explorer & CMT Visualizer v4.0
# - Adds side-by-side comparison capabilities from HTML draft
# - Implements cross-species neighbor finding for grammar mapping
# - Separates human and dog audio with automatic pairing
# - Enhanced dual visualization for comparative analysis
# ================================================================
# - Adds Interactive Holography tab for full field reconstruction.
# - Interpolates the continuous CMT state-space (Φ field).
# - Visualizes topology, vector flow, and phase interference.
# - Adds informational-entropy-geometry visualization.
# - Prioritizes specific Colab paths for data loading.
# ================================================================
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
print("Initializing the Interactive CMT Holography Explorer...")
# ---------------------------------------------------------------
# Data setup
# ---------------------------------------------------------------
# Paths for local execution (used for dummy data generation fallback)
BASE_DIR = os.path.abspath(os.getcwd())
DATA_DIR = os.path.join(BASE_DIR, "data")
DOG_DIR = os.path.join(DATA_DIR, "dog")
HUMAN_DIR = os.path.join(DATA_DIR, "human")
# Explicit paths for Colab environment
CSV_DOG = "/content/cmt_dog_sound_analysis.csv"
CSV_HUMAN = "/content/cmt_human_speech_analysis.csv"
# These are for creating dummy audio files if needed
os.makedirs(DOG_DIR, exist_ok=True)
os.makedirs(os.path.join(HUMAN_DIR, "Actor_01"), exist_ok=True)
# --- Audio Data Configuration (Must match your data source locations) ---
DOG_AUDIO_BASE_PATH = '/content/drive/MyDrive/combined'
HUMAN_AUDIO_BASE_PATH = '/content/drive/MyDrive/human'
# ---------------------------------------------------------------
# Cross-Species Analysis Functions
# ---------------------------------------------------------------
def find_nearest_cross_species_neighbor(selected_row, df_combined, n_neighbors=5):
"""
Finds the closest neighbor from the opposite species using feature similarity.
This enables cross-species pattern mapping for grammar development.
"""
selected_source = selected_row['source']
opposite_source = 'Human' if selected_source == 'Dog' else 'Dog'
# Get feature columns for similarity calculation
feature_cols = [c for c in df_combined.columns if c.startswith("feature_")]
if not feature_cols:
# Fallback to any numeric columns if no feature columns exist
numeric_cols = df_combined.select_dtypes(include=[np.number]).columns
feature_cols = [c for c in numeric_cols if c not in ['x', 'y', 'z', 'cluster']]
if not feature_cols:
# Random selection if no suitable features found
opposite_species_data = df_combined[df_combined['source'] == opposite_source]
if len(opposite_species_data) > 0:
return opposite_species_data.iloc[0]
return None
# Extract features for the selected row
selected_features = selected_row[feature_cols].values.reshape(1, -1)
selected_features = np.nan_to_num(selected_features)
# Get all rows from the opposite species
opposite_species_data = df_combined[df_combined['source'] == opposite_source]
if len(opposite_species_data) == 0:
return None
# Extract features for opposite species
opposite_features = opposite_species_data[feature_cols].values
opposite_features = np.nan_to_num(opposite_features)
# Calculate cosine similarity (better for high-dimensional feature spaces)
similarities = cosine_similarity(selected_features, opposite_features)[0]
# Find the index of the most similar neighbor
most_similar_idx = np.argmax(similarities)
nearest_neighbor = opposite_species_data.iloc[most_similar_idx]
return nearest_neighbor
# ---------------------------------------------------------------
# Load datasets (Colab-first paths)
# ---------------------------------------------------------------
if os.path.exists(CSV_DOG) and os.path.exists(CSV_HUMAN):
print(f"Found existing data files. Loading from:\n- {CSV_DOG}\n- {CSV_HUMAN}")
df_dog = pd.read_csv(CSV_DOG)
df_human = pd.read_csv(CSV_HUMAN)
print("Successfully loaded data from specified paths.")
else:
print("Could not find one or both CSV files. Generating and using in-memory dummy data.")
# This section is for DUMMY DATA GENERATION ONLY.
# It runs if the primary CSVs are not found and does NOT write files.
n_dummy_items_per_category = 50
rng = np.random.default_rng(42)
dog_labels = ["bark", "growl", "whine", "pant"] * (n_dummy_items_per_category // 4)
human_labels = ["speech", "laugh", "cry", "shout"] * (n_dummy_items_per_category // 4)
dog_rows = {
"feature_1": rng.random(n_dummy_items_per_category), "feature_2": rng.random(n_dummy_items_per_category), "feature_3": rng.random(n_dummy_items_per_category),
"label": dog_labels, "filepath": [f"dog_{i}.wav" for i in range(n_dummy_items_per_category)],
"diag_srl_gamma": rng.uniform(0.5, 5.0, n_dummy_items_per_category), "diag_alpha_gamma": rng.uniform(0.1, 2.0, n_dummy_items_per_category),
"zeta_curvature": rng.uniform(-1, 1, n_dummy_items_per_category), "torsion_index": rng.uniform(0, 1, n_dummy_items_per_category),
}
human_rows = {
"feature_1": rng.random(n_dummy_items_per_category), "feature_2": rng.random(n_dummy_items_per_category), "feature_3": rng.random(n_dummy_items_per_category),
"label": human_labels, "filepath": [f"human_{i}.wav" for i in range(n_dummy_items_per_category)],
"diag_srl_gamma": rng.uniform(0.5, 5.0, n_dummy_items_per_category), "diag_alpha_gamma": rng.uniform(0.1, 2.0, n_dummy_items_per_category),
"zeta_curvature": rng.uniform(-1, 1, n_dummy_items_per_category), "torsion_index": rng.uniform(0, 1, n_dummy_items_per_category),
}
df_dog = pd.DataFrame(dog_rows)
df_human = pd.DataFrame(human_rows)
# We still create dummy audio files for the UI to use if needed
sr = 22050
dur = 2.0
t = np.linspace(0, dur, int(sr * dur), endpoint=False)
for i in range(n_dummy_items_per_category):
tone_freq = 220 + 20 * (i % 5)
audio = 0.1 * np.sin(2 * np.pi * tone_freq * t) + 0.02 * rng.standard_normal(t.shape)
audio = audio / (np.max(np.abs(audio)) + 1e-9)
dog_label = dog_labels[i]
dog_label_dir = os.path.join(DOG_DIR, dog_label)
os.makedirs(dog_label_dir, exist_ok=True)
sf.write(os.path.join(dog_label_dir, f"dog_{i}.wav"), audio, sr)
sf.write(os.path.join(HUMAN_DIR, "Actor_01", f"human_{i}.wav"), audio, sr)
print(f"Loaded {len(df_dog)} dog rows and {len(df_human)} human rows.")
df_dog["source"], df_human["source"] = "Dog", "Human"
df_combined = pd.concat([df_dog, df_human], ignore_index=True)
# ---------------------------------------------------------------
# Expanded CMT implementation
# ---------------------------------------------------------------
class ExpandedCMT:
def __init__(self):
self.c1, self.c2 = 0.587 + 1.223j, -0.994 + 0.0j
# A large but finite number to represent the pole at z=1 for Zeta
self.ZETA_POLE_REGULARIZATION = 1e6 - 1e6j
self.lens_library = {
"gamma": sp_special.gamma,
"zeta": self._regularized_zeta, # Use the robust zeta function
"airy": lambda z: sp_special.airy(z)[0],
"bessel": lambda z: sp_special.jv(0, z),
}
def _regularized_zeta(self, z: np.ndarray) -> np.ndarray:
"""
A wrapper around scipy's zeta function to handle the pole at z=1.
"""
# Create a copy to avoid modifying the original array
z_out = np.copy(z).astype(np.complex128)
# Find where the real part is close to 1 and the imaginary part is close to 0
pole_condition = np.isclose(np.real(z), 1.0) & np.isclose(np.imag(z), 0.0)
# Apply the standard zeta function to non-pole points
non_pole_points = ~pole_condition
z_out[non_pole_points] = sp_special.zeta(z[non_pole_points], 1)
# Apply the regularization constant to the pole points
z_out[pole_condition] = self.ZETA_POLE_REGULARIZATION
return z_out
def _robust_normalize(self, signal: np.ndarray) -> np.ndarray:
if signal.size == 0: return signal
Q1, Q3 = np.percentile(signal, [25, 75])
IQR = Q3 - Q1
if IQR < 1e-9:
median, mad = np.median(signal), np.median(np.abs(signal - np.median(signal)))
return np.zeros_like(signal) if mad < 1e-9 else (signal - median) / (mad + 1e-9)
lower, upper = Q1 - 1.5 * IQR, Q3 + 1.5 * IQR
clipped = np.clip(signal, lower, upper)
s_min, s_max = np.min(clipped), np.max(clipped)
return np.zeros_like(signal) if s_max == s_min else 2.0 * (clipped - s_min) / (s_max - s_min) - 1.0
def _encode(self, signal: np.ndarray) -> np.ndarray:
N = len(signal)
if N == 0: return signal.astype(np.complex128)
i = np.arange(N)
theta = 2.0 * np.pi * i / N
f_k, A_k = np.array([271, 341, 491]), np.array([0.033, 0.050, 0.100])
phi = np.sum(A_k[:, None] * np.sin(2.0 * np.pi * f_k[:, None] * i / N), axis=0)
Theta = theta + phi
exp_iTheta = np.exp(1j * Theta)
g, m = signal * exp_iTheta, np.abs(signal) * exp_iTheta
return 0.5 * g + 0.5 * m
def _apply_lens(self, encoded_signal: np.ndarray, lens_type: str):
lens_fn = self.lens_library.get(lens_type)
if not lens_fn: raise ValueError(f"Lens '{lens_type}' not found.")
with np.errstate(all="ignore"):
w = lens_fn(encoded_signal)
phi_trajectory = self.c1 * np.angle(w) + self.c2 * np.abs(encoded_signal)
finite_mask = np.isfinite(phi_trajectory)
return phi_trajectory[finite_mask], w[finite_mask], encoded_signal[finite_mask], len(encoded_signal), len(phi_trajectory[finite_mask])
# ---------------------------------------------------------------
# Feature preparation and UMAP embedding
# ---------------------------------------------------------------
feature_cols = [c for c in df_combined.columns if c.startswith("feature_")]
features = np.nan_to_num(df_combined[feature_cols].to_numpy())
reducer = UMAP(n_components=3, n_neighbors=15, min_dist=0.1, random_state=42)
df_combined[["x", "y", "z"]] = reducer.fit_transform(features)
kmeans = KMeans(n_clusters=max(4, min(12, int(np.sqrt(len(df_combined))))), random_state=42, n_init=10)
df_combined["cluster"] = kmeans.fit_predict(features)
df_combined["chaos_score"] = np.log1p(df_combined.get("diag_srl_gamma", 0)) / (df_combined.get("diag_alpha_gamma", 1) + 1e-2)
# ---------------------------------------------------------------
# Core Visualization and Analysis Functions
# ---------------------------------------------------------------
def resolve_audio_path(row: pd.Series) -> str:
"""
Intelligently reconstructs the full path to an audio file
based on the logic from the data generation scripts.
"""
basename = str(row.get("filepath", ""))
source = row.get("source", "")
label = row.get("label", "")
# For "Dog" data, the structure is: {base_path}/{label}/{filename}
if source == "Dog":
expected_path = os.path.join(DOG_AUDIO_BASE_PATH, label, basename)
if os.path.exists(expected_path):
return expected_path
# For "Human" data, we must search within all "Actor_XX" subfolders
elif source == "Human":
if os.path.isdir(HUMAN_AUDIO_BASE_PATH):
for actor_folder in os.listdir(HUMAN_AUDIO_BASE_PATH):
if actor_folder.startswith("Actor_"):
expected_path = os.path.join(HUMAN_AUDIO_BASE_PATH, actor_folder, basename)
if os.path.exists(expected_path):
return expected_path
# Fallback for dummy data or other cases
if os.path.exists(basename):
return basename
# If all else fails, return the original basename and let it error out with a clear message
return basename
def get_cmt_data(filepath: str, lens: str):
try:
y, _ = sf.read(filepath)
if y.ndim > 1: y = np.mean(y, axis=1)
except Exception as e:
print(f"Error reading audio file {filepath}: {e}")
return None
cmt = ExpandedCMT()
normalized = cmt._robust_normalize(y)
encoded = cmt._encode(normalized)
# The _apply_lens function now returns additional diagnostic info
phi, w, z, original_count, final_count = cmt._apply_lens(encoded, lens)
return {
"phi": phi, "w": w, "z": z,
"original_count": original_count,
"final_count": final_count
}
def generate_holographic_field(z: np.ndarray, phi: np.ndarray, resolution: int):
if z is None or phi is None or len(z) < 4: return None
points = np.vstack([np.real(z), np.imag(z)]).T
grid_x, grid_y = np.mgrid[
np.min(points[:,0]):np.max(points[:,0]):complex(0, resolution),
np.min(points[:,1]):np.max(points[:,1]):complex(0, resolution)
]
grid_phi_real = griddata(points, np.real(phi), (grid_x, grid_y), method='cubic')
grid_phi_imag = griddata(points, np.imag(phi), (grid_x, grid_y), method='cubic')
grid_phi = np.nan_to_num(grid_phi_real + 1j * grid_phi_imag)
return grid_x, grid_y, grid_phi
def create_holography_plot(z, phi, resolution, wavelength):
field_data = generate_holographic_field(z, phi, resolution)
if field_data is None: return go.Figure(layout={"title": "Not enough data for holography"})
grid_x, grid_y, grid_phi = field_data
mag_phi = np.abs(grid_phi)
phase_phi = np.angle(grid_phi)
# --- Wavelength to Colorscale Mapping ---
def wavelength_to_rgb(wl):
# Simple approximation to map visible spectrum to RGB
if 380 <= wl < 440: return f'rgb({-(wl - 440) / (440 - 380) * 255}, 0, 255)' # Violet
elif 440 <= wl < 495: return f'rgb(0, {(wl - 440) / (495 - 440) * 255}, 255)' # Blue
elif 495 <= wl < 570: return f'rgb(0, 255, {-(wl - 570) / (570 - 495) * 255})' # Green
elif 570 <= wl < 590: return f'rgb({(wl - 570) / (590 - 570) * 255}, 255, 0)' # Yellow
elif 590 <= wl < 620: return f'rgb(255, {-(wl - 620) / (620 - 590) * 255}, 0)' # Orange
elif 620 <= wl <= 750: return f'rgb(255, 0, 0)' # Red
return 'rgb(255,255,255)'
mid_color = wavelength_to_rgb(wavelength)
custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']]
fig = go.Figure()
# 1. The Holographic Surface (Topology + Phase Interference)
fig.add_trace(go.Surface(
x=grid_x, y=grid_y, z=mag_phi,
surfacecolor=phase_phi,
colorscale=custom_colorscale,
cmin=-np.pi, cmax=np.pi,
colorbar=dict(title='Φ Phase'),
name='Holographic Field',
contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True, highlightwidth=10)
))
# 2. The original data points projected onto the surface
fig.add_trace(go.Scatter3d(
x=np.real(z), y=np.imag(z), z=np.abs(phi) + 0.05, # slight offset
mode='markers',
marker=dict(size=3, color='black', symbol='x'),
name='Data Points'
))
# 3. The Vector Flow Field (using cones for direction)
grad_y, grad_x = np.gradient(mag_phi)
fig.add_trace(go.Cone(
x=grid_x.flatten(), y=grid_y.flatten(), z=mag_phi.flatten(),
u=-grad_x.flatten(), v=-grad_y.flatten(), w=np.full_like(mag_phi.flatten(), -0.1),
sizemode="absolute", sizeref=0.1,
anchor="tip",
colorscale='Greys',
showscale=False,
name='Vector Flow'
))
fig.update_layout(
title="Interactive Holographic Field Reconstruction",
scene=dict(
xaxis_title="Re(z) - Encoded Signal",
yaxis_title="Im(z) - Encoded Signal",
zaxis_title="|Φ| - Field Magnitude"
),
margin=dict(l=0, r=0, b=0, t=40)
)
return fig
def create_diagnostic_plots(z, w):
"""Creates a 2D plot showing the Aperture (z) and Lens Response (w)."""
if z is None or w is None:
return go.Figure(layout={"title": "Not enough data for diagnostic plots"})
fig = go.Figure()
# Aperture (Encoded Signal)
fig.add_trace(go.Scatter(
x=np.real(z), y=np.imag(z), mode='markers',
marker=dict(size=5, color='blue', opacity=0.6),
name='Aperture (z)'
))
# Lens Response
fig.add_trace(go.Scatter(
x=np.real(w), y=np.imag(w), mode='markers',
marker=dict(size=5, color='red', opacity=0.6, symbol='x'),
name='Lens Response (w)'
))
fig.update_layout(
title="Diagnostic View: Aperture and Lens Response",
xaxis_title="Real Part",
yaxis_title="Imaginary Part",
legend_title="Signal Stage",
margin=dict(l=20, r=20, t=60, b=20)
)
return fig
def create_dual_holography_plot(z1, phi1, z2, phi2, resolution, wavelength, title1="Primary", title2="Comparison"):
"""Creates side-by-side holographic visualizations for comparison."""
field_data1 = generate_holographic_field(z1, phi1, resolution)
field_data2 = generate_holographic_field(z2, phi2, resolution)
if field_data1 is None or field_data2 is None:
return go.Figure(layout={"title": "Insufficient data for dual holography"})
grid_x1, grid_y1, grid_phi1 = field_data1
grid_x2, grid_y2, grid_phi2 = field_data2
mag_phi1, phase_phi1 = np.abs(grid_phi1), np.angle(grid_phi1)
mag_phi2, phase_phi2 = np.abs(grid_phi2), np.angle(grid_phi2)
# Wavelength to colorscale mapping
def wavelength_to_rgb(wl):
if 380 <= wl < 440: return f'rgb({int(-(wl - 440) / (440 - 380) * 255)}, 0, 255)'
elif 440 <= wl < 495: return f'rgb(0, {int((wl - 440) / (495 - 440) * 255)}, 255)'
elif 495 <= wl < 570: return f'rgb(0, 255, {int(-(wl - 570) / (570 - 495) * 255)})'
elif 570 <= wl < 590: return f'rgb({int((wl - 570) / (590 - 570) * 255)}, 255, 0)'
elif 590 <= wl < 620: return f'rgb(255, {int(-(wl - 620) / (620 - 590) * 255)}, 0)'
elif 620 <= wl <= 750: return 'rgb(255, 0, 0)'
return 'rgb(255,255,255)'
mid_color = wavelength_to_rgb(wavelength)
custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']]
fig = make_subplots(
rows=1, cols=2,
specs=[[{'type': 'scene'}, {'type': 'scene'}]],
subplot_titles=[title1, title2]
)
# Left plot (Primary)
fig.add_trace(go.Surface(
x=grid_x1, y=grid_y1, z=mag_phi1,
surfacecolor=phase_phi1,
colorscale=custom_colorscale,
cmin=-np.pi, cmax=np.pi,
showscale=False,
name=title1,
contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True)
), row=1, col=1)
# Right plot (Comparison)
fig.add_trace(go.Surface(
x=grid_x2, y=grid_y2, z=mag_phi2,
surfacecolor=phase_phi2,
colorscale=custom_colorscale,
cmin=-np.pi, cmax=np.pi,
showscale=False,
name=title2,
contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True)
), row=1, col=2)
# Add data points
if z1 is not None and phi1 is not None:
fig.add_trace(go.Scatter3d(
x=np.real(z1), y=np.imag(z1), z=np.abs(phi1) + 0.05,
mode='markers', marker=dict(size=3, color='black', symbol='x'),
name=f'{title1} Points', showlegend=False
), row=1, col=1)
if z2 is not None and phi2 is not None:
fig.add_trace(go.Scatter3d(
x=np.real(z2), y=np.imag(z2), z=np.abs(phi2) + 0.05,
mode='markers', marker=dict(size=3, color='black', symbol='x'),
name=f'{title2} Points', showlegend=False
), row=1, col=2)
fig.update_layout(
title="Side-by-Side Cross-Species Holographic Comparison",
scene=dict(
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Φ|",
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
),
scene2=dict(
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Φ|",
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
),
margin=dict(l=0, r=0, b=0, t=60),
height=600
)
return fig
def create_dual_diagnostic_plots(z1, w1, z2, w2, title1="Primary", title2="Comparison"):
"""Creates side-by-side diagnostic plots for cross-species comparison."""
fig = make_subplots(
rows=1, cols=2,
subplot_titles=[f"{title1}: Aperture & Lens Response", f"{title2}: Aperture & Lens Response"]
)
if z1 is not None and w1 is not None:
# Primary aperture and response
fig.add_trace(go.Scatter(
x=np.real(z1), y=np.imag(z1), mode='markers',
marker=dict(size=5, color='blue', opacity=0.6),
name=f'{title1} Aperture', showlegend=True
), row=1, col=1)
fig.add_trace(go.Scatter(
x=np.real(w1), y=np.imag(w1), mode='markers',
marker=dict(size=5, color='red', opacity=0.6, symbol='x'),
name=f'{title1} Response', showlegend=True
), row=1, col=1)
if z2 is not None and w2 is not None:
# Comparison aperture and response
fig.add_trace(go.Scatter(
x=np.real(z2), y=np.imag(z2), mode='markers',
marker=dict(size=5, color='darkblue', opacity=0.6),
name=f'{title2} Aperture', showlegend=True
), row=1, col=2)
fig.add_trace(go.Scatter(
x=np.real(w2), y=np.imag(w2), mode='markers',
marker=dict(size=5, color='darkred', opacity=0.6, symbol='x'),
name=f'{title2} Response', showlegend=True
), row=1, col=2)
fig.update_layout(
title="Cross-Species Diagnostic Comparison",
height=400,
margin=dict(l=20, r=20, t=60, b=20)
)
fig.update_xaxes(title_text="Real Part", row=1, col=1)
fig.update_yaxes(title_text="Imaginary Part", row=1, col=1)
fig.update_xaxes(title_text="Real Part", row=1, col=2)
fig.update_yaxes(title_text="Imaginary Part", row=1, col=2)
return fig
def create_entropy_geometry_plot(phi: np.ndarray):
"""Creates a plot showing magnitude/phase distributions and their entropy."""
if phi is None or len(phi) < 2:
return go.Figure(layout={"title": "Not enough data for entropy analysis"})
magnitudes = np.abs(phi)
phases = np.angle(phi)
# Calculate entropy
mag_hist, _ = np.histogram(magnitudes, bins='auto', density=True)
phase_hist, _ = np.histogram(phases, bins='auto', density=True)
mag_entropy = shannon_entropy(mag_hist)
phase_entropy = shannon_entropy(phase_hist)
fig = make_subplots(rows=1, cols=2, subplot_titles=(
f"Magnitude Distribution (Entropy: {mag_entropy:.3f})",
f"Phase Distribution (Entropy: {phase_entropy:.3f})"
))
fig.add_trace(go.Histogram(x=magnitudes, name='Magnitude', nbinsx=50), row=1, col=1)
fig.add_trace(go.Histogram(x=phases, name='Phase', nbinsx=50), row=1, col=2)
fig.update_layout(
title_text="Informational-Entropy Geometry",
showlegend=False,
bargap=0.1,
margin=dict(l=20, r=20, t=60, b=20)
)
fig.update_xaxes(title_text="|Φ|", row=1, col=1)
fig.update_yaxes(title_text="Count", row=1, col=1)
fig.update_xaxes(title_text="angle(Φ)", row=1, col=2)
fig.update_yaxes(title_text="Count", row=1, col=2)
return fig
# ---------------------------------------------------------------
# Gradio UI
# ---------------------------------------------------------------
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="cyan")) as demo:
gr.Markdown("# Exhaustive CMT Explorer for Interspecies Communication v3.2")
file_choices = df_combined["filepath"].astype(str).tolist()
default_primary = file_choices[0] if file_choices else ""
with gr.Tabs():
with gr.TabItem("Unified Manifold"):
gr.Plot(value=lambda: go.Figure(data=[go.Scatter3d(
x=df_combined["x"], y=df_combined["y"], z=df_combined["z"],
mode="markers", marker=dict(color=df_combined["cluster"], size=5, colorscale="Viridis", showscale=True, colorbar={"title": "Cluster ID"}),
text=df_combined.apply(lambda r: f"{r['source']}: {r.get('label', '')}<br>File: {r['filepath']}", axis=1),
hoverinfo="text"
)], layout=dict(title="Communication Manifold (UMAP Projection)")), label="UMAP Manifold")
with gr.TabItem("Interactive Holography"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Cross-Species Holography Controls")
# Species selection and automatic pairing
species_dropdown = gr.Dropdown(
label="Select Species",
choices=["Dog", "Human"],
value="Dog"
)
# Primary file selection (filtered by species)
primary_dropdown = gr.Dropdown(
label="Primary Audio File",
choices=[],
value=""
)
# Automatically found neighbor (from opposite species)
neighbor_dropdown = gr.Dropdown(
label="Auto-Found Cross-Species Neighbor",
choices=[],
value="",
interactive=True # Allow manual override
)
holo_lens_dropdown = gr.Dropdown(label="CMT Lens", choices=["gamma", "zeta", "airy", "bessel"], value="gamma")
holo_resolution_slider = gr.Slider(label="Field Resolution", minimum=20, maximum=100, step=5, value=40)
holo_wavelength_slider = gr.Slider(label="Illumination Wavelength (nm)", minimum=380, maximum=750, step=5, value=550)
# Information panels
primary_info_html = gr.HTML(label="Primary Audio Info")
neighbor_info_html = gr.HTML(label="Neighbor Audio Info")
# Audio players
primary_audio_out = gr.Audio(label="Primary Audio")
neighbor_audio_out = gr.Audio(label="Neighbor Audio")
with gr.Column(scale=2):
dual_holography_plot = gr.Plot(label="Side-by-Side Holographic Comparison")
dual_diagnostic_plot = gr.Plot(label="Cross-Species Diagnostic Comparison")
def update_file_choices(species):
"""Update the primary file dropdown based on selected species."""
species_files = df_combined[df_combined["source"] == species]["filepath"].astype(str).tolist()
return gr.Dropdown.update(choices=species_files, value=species_files[0] if species_files else "")
def update_cross_species_view(species, primary_file, neighbor_file, lens, resolution, wavelength):
if not primary_file:
empty_fig = go.Figure(layout={"title": "Please select a primary file."})
return empty_fig, empty_fig, "", "", None, None, []
# Get primary row
primary_row = df_combined[
(df_combined["filepath"] == primary_file) &
(df_combined["source"] == species)
].iloc[0] if len(df_combined[
(df_combined["filepath"] == primary_file) &
(df_combined["source"] == species)
]) > 0 else None
if primary_row is None:
empty_fig = go.Figure(layout={"title": "Primary file not found."})
return empty_fig, empty_fig, "", "", None, None, []
# Find cross-species neighbor if not manually selected
if not neighbor_file:
neighbor_row = find_nearest_cross_species_neighbor(primary_row, df_combined)
if neighbor_row is not None:
neighbor_file = neighbor_row['filepath']
else:
# Get manually selected neighbor
opposite_species = 'Human' if species == 'Dog' else 'Dog'
neighbor_row = df_combined[
(df_combined["filepath"] == neighbor_file) &
(df_combined["source"] == opposite_species)
].iloc[0] if len(df_combined[
(df_combined["filepath"] == neighbor_file) &
(df_combined["source"] == opposite_species)
]) > 0 else None
# Get CMT data for both files
primary_fp = resolve_audio_path(primary_row)
primary_cmt = get_cmt_data(primary_fp, lens)
neighbor_cmt = None
if neighbor_row is not None:
neighbor_fp = resolve_audio_path(neighbor_row)
neighbor_cmt = get_cmt_data(neighbor_fp, lens)
# Create visualizations
if primary_cmt and neighbor_cmt:
primary_title = f"{species}: {primary_row.get('label', 'Unknown')}"
neighbor_title = f"{neighbor_row['source']}: {neighbor_row.get('label', 'Unknown')}"
dual_holo_fig = create_dual_holography_plot(
primary_cmt["z"], primary_cmt["phi"],
neighbor_cmt["z"], neighbor_cmt["phi"],
resolution, wavelength, primary_title, neighbor_title
)
dual_diag_fig = create_dual_diagnostic_plots(
primary_cmt["z"], primary_cmt["w"],
neighbor_cmt["z"], neighbor_cmt["w"],
primary_title, neighbor_title
)
else:
dual_holo_fig = go.Figure(layout={"title": "Error processing audio files"})
dual_diag_fig = go.Figure(layout={"title": "Error processing audio files"})
# Build info strings
primary_info = f"""
<b>Primary:</b> {primary_row['filepath']}<br>
<b>Species:</b> {primary_row['source']}<br>
<b>Label:</b> {primary_row.get('label', 'N/A')}<br>
<b>Data Points:</b> {primary_cmt['final_count'] if primary_cmt else 0} / {primary_cmt['original_count'] if primary_cmt else 0}
"""
neighbor_info = ""
if neighbor_row is not None:
neighbor_info = f"""
<b>Neighbor:</b> {neighbor_row['filepath']}<br>
<b>Species:</b> {neighbor_row['source']}<br>
<b>Label:</b> {neighbor_row.get('label', 'N/A')}<br>
<b>Data Points:</b> {neighbor_cmt['final_count'] if neighbor_cmt else 0} / {neighbor_cmt['original_count'] if neighbor_cmt else 0}
"""
# Update neighbor dropdown choices
opposite_species = 'Human' if species == 'Dog' else 'Dog'
neighbor_choices = df_combined[df_combined["source"] == opposite_species]["filepath"].astype(str).tolist()
# Audio files
primary_audio = primary_fp if primary_fp and os.path.exists(primary_fp) else None
neighbor_audio = neighbor_fp if neighbor_row and neighbor_fp and os.path.exists(neighbor_fp) else None
return (dual_holo_fig, dual_diag_fig, primary_info, neighbor_info,
primary_audio, neighbor_audio,
gr.Dropdown.update(choices=neighbor_choices, value=neighbor_file if neighbor_row else ""))
# Event handlers
species_dropdown.change(
update_file_choices,
inputs=[species_dropdown],
outputs=[primary_dropdown]
)
cross_species_inputs = [species_dropdown, primary_dropdown, neighbor_dropdown,
holo_lens_dropdown, holo_resolution_slider, holo_wavelength_slider]
cross_species_outputs = [dual_holography_plot, dual_diagnostic_plot,
primary_info_html, neighbor_info_html,
primary_audio_out, neighbor_audio_out, neighbor_dropdown]
for component in cross_species_inputs:
component.change(update_cross_species_view,
inputs=cross_species_inputs,
outputs=cross_species_outputs)
# Initialize on load
demo.load(lambda: update_file_choices("Dog"), outputs=[primary_dropdown])
demo.load(update_cross_species_view,
inputs=cross_species_inputs,
outputs=cross_species_outputs)
if __name__ == "__main__":
demo.launch(share=True, debug=True)
|