File size: 34,323 Bytes
6f06eba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
import os
import warnings
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from umap import UMAP
from sklearn.cluster import KMeans
from scipy.stats import entropy as shannon_entropy
from scipy import special as sp_special
from scipy.interpolate import griddata
from sklearn.metrics.pairwise import cosine_similarity
from scipy.spatial.distance import cdist
import soundfile as sf
import gradio as gr

# ================================================================
# Unified Communication Manifold Explorer & CMT Visualizer v4.0
# - Adds side-by-side comparison capabilities from HTML draft
# - Implements cross-species neighbor finding for grammar mapping
# - Separates human and dog audio with automatic pairing
# - Enhanced dual visualization for comparative analysis
# ================================================================
# - Adds Interactive Holography tab for full field reconstruction.
# - Interpolates the continuous CMT state-space (Φ field).
# - Visualizes topology, vector flow, and phase interference.
# - Adds informational-entropy-geometry visualization.
# - Prioritizes specific Colab paths for data loading.
# ================================================================
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)

print("Initializing the Interactive CMT Holography Explorer...")

# ---------------------------------------------------------------
# Data setup
# ---------------------------------------------------------------
# Paths for local execution (used for dummy data generation fallback)
BASE_DIR = os.path.abspath(os.getcwd())
DATA_DIR = os.path.join(BASE_DIR, "data")
DOG_DIR = os.path.join(DATA_DIR, "dog")
HUMAN_DIR = os.path.join(DATA_DIR, "human")

# Explicit paths for Colab environment
CSV_DOG = "/content/cmt_dog_sound_analysis.csv"
CSV_HUMAN = "/content/cmt_human_speech_analysis.csv"

# These are for creating dummy audio files if needed
os.makedirs(DOG_DIR, exist_ok=True)
os.makedirs(os.path.join(HUMAN_DIR, "Actor_01"), exist_ok=True)

# --- Audio Data Configuration (Must match your data source locations) ---
DOG_AUDIO_BASE_PATH = '/content/drive/MyDrive/combined'
HUMAN_AUDIO_BASE_PATH = '/content/drive/MyDrive/human'


# ---------------------------------------------------------------
# Cross-Species Analysis Functions
# ---------------------------------------------------------------
def find_nearest_cross_species_neighbor(selected_row, df_combined, n_neighbors=5):
    """
    Finds the closest neighbor from the opposite species using feature similarity.
    This enables cross-species pattern mapping for grammar development.
    """
    selected_source = selected_row['source']
    opposite_source = 'Human' if selected_source == 'Dog' else 'Dog'
    
    # Get feature columns for similarity calculation
    feature_cols = [c for c in df_combined.columns if c.startswith("feature_")]
    
    if not feature_cols:
        # Fallback to any numeric columns if no feature columns exist
        numeric_cols = df_combined.select_dtypes(include=[np.number]).columns
        feature_cols = [c for c in numeric_cols if c not in ['x', 'y', 'z', 'cluster']]
    
    if not feature_cols:
        # Random selection if no suitable features found
        opposite_species_data = df_combined[df_combined['source'] == opposite_source]
        if len(opposite_species_data) > 0:
            return opposite_species_data.iloc[0]
        return None
    
    # Extract features for the selected row
    selected_features = selected_row[feature_cols].values.reshape(1, -1)
    selected_features = np.nan_to_num(selected_features)
    
    # Get all rows from the opposite species
    opposite_species_data = df_combined[df_combined['source'] == opposite_source]
    if len(opposite_species_data) == 0:
        return None
    
    # Extract features for opposite species
    opposite_features = opposite_species_data[feature_cols].values
    opposite_features = np.nan_to_num(opposite_features)
    
    # Calculate cosine similarity (better for high-dimensional feature spaces)
    similarities = cosine_similarity(selected_features, opposite_features)[0]
    
    # Find the index of the most similar neighbor
    most_similar_idx = np.argmax(similarities)
    nearest_neighbor = opposite_species_data.iloc[most_similar_idx]
    
    return nearest_neighbor

# ---------------------------------------------------------------
# Load datasets (Colab-first paths)
# ---------------------------------------------------------------
if os.path.exists(CSV_DOG) and os.path.exists(CSV_HUMAN):
    print(f"Found existing data files. Loading from:\n- {CSV_DOG}\n- {CSV_HUMAN}")
    df_dog = pd.read_csv(CSV_DOG)
    df_human = pd.read_csv(CSV_HUMAN)
    print("Successfully loaded data from specified paths.")
else:
    print("Could not find one or both CSV files. Generating and using in-memory dummy data.")
    
    # This section is for DUMMY DATA GENERATION ONLY.
    # It runs if the primary CSVs are not found and does NOT write files.
    n_dummy_items_per_category = 50 
    
    rng = np.random.default_rng(42)
    dog_labels = ["bark", "growl", "whine", "pant"] * (n_dummy_items_per_category // 4)
    human_labels = ["speech", "laugh", "cry", "shout"] * (n_dummy_items_per_category // 4)
    dog_rows = {
        "feature_1": rng.random(n_dummy_items_per_category), "feature_2": rng.random(n_dummy_items_per_category), "feature_3": rng.random(n_dummy_items_per_category),
        "label": dog_labels, "filepath": [f"dog_{i}.wav" for i in range(n_dummy_items_per_category)],
        "diag_srl_gamma": rng.uniform(0.5, 5.0, n_dummy_items_per_category), "diag_alpha_gamma": rng.uniform(0.1, 2.0, n_dummy_items_per_category),
        "zeta_curvature": rng.uniform(-1, 1, n_dummy_items_per_category), "torsion_index": rng.uniform(0, 1, n_dummy_items_per_category),
    }
    human_rows = {
        "feature_1": rng.random(n_dummy_items_per_category), "feature_2": rng.random(n_dummy_items_per_category), "feature_3": rng.random(n_dummy_items_per_category),
        "label": human_labels, "filepath": [f"human_{i}.wav" for i in range(n_dummy_items_per_category)],
        "diag_srl_gamma": rng.uniform(0.5, 5.0, n_dummy_items_per_category), "diag_alpha_gamma": rng.uniform(0.1, 2.0, n_dummy_items_per_category),
        "zeta_curvature": rng.uniform(-1, 1, n_dummy_items_per_category), "torsion_index": rng.uniform(0, 1, n_dummy_items_per_category),
    }

    df_dog = pd.DataFrame(dog_rows)
    df_human = pd.DataFrame(human_rows)

    # We still create dummy audio files for the UI to use if needed
    sr = 22050
    dur = 2.0
    t = np.linspace(0, dur, int(sr * dur), endpoint=False)
    for i in range(n_dummy_items_per_category):
        tone_freq = 220 + 20 * (i % 5)
        audio = 0.1 * np.sin(2 * np.pi * tone_freq * t) + 0.02 * rng.standard_normal(t.shape)
        audio = audio / (np.max(np.abs(audio)) + 1e-9)
        dog_label = dog_labels[i]
        dog_label_dir = os.path.join(DOG_DIR, dog_label)
        os.makedirs(dog_label_dir, exist_ok=True)
        sf.write(os.path.join(dog_label_dir, f"dog_{i}.wav"), audio, sr)
        sf.write(os.path.join(HUMAN_DIR, "Actor_01", f"human_{i}.wav"), audio, sr)

print(f"Loaded {len(df_dog)} dog rows and {len(df_human)} human rows.")
df_dog["source"], df_human["source"] = "Dog", "Human"
df_combined = pd.concat([df_dog, df_human], ignore_index=True)

# ---------------------------------------------------------------
# Expanded CMT implementation
# ---------------------------------------------------------------
class ExpandedCMT:
    def __init__(self):
        self.c1, self.c2 = 0.587 + 1.223j, -0.994 + 0.0j
        # A large but finite number to represent the pole at z=1 for Zeta
        self.ZETA_POLE_REGULARIZATION = 1e6 - 1e6j 
        self.lens_library = {
            "gamma": sp_special.gamma, 
            "zeta": self._regularized_zeta, # Use the robust zeta function
            "airy": lambda z: sp_special.airy(z)[0], 
            "bessel": lambda z: sp_special.jv(0, z),
        }

    def _regularized_zeta(self, z: np.ndarray) -> np.ndarray:
        """
        A wrapper around scipy's zeta function to handle the pole at z=1.
        """
        # Create a copy to avoid modifying the original array
        z_out = np.copy(z).astype(np.complex128)
        
        # Find where the real part is close to 1 and the imaginary part is close to 0
        pole_condition = np.isclose(np.real(z), 1.0) & np.isclose(np.imag(z), 0.0)
        
        # Apply the standard zeta function to non-pole points
        non_pole_points = ~pole_condition
        z_out[non_pole_points] = sp_special.zeta(z[non_pole_points], 1)
        
        # Apply the regularization constant to the pole points
        z_out[pole_condition] = self.ZETA_POLE_REGULARIZATION
        
        return z_out

    def _robust_normalize(self, signal: np.ndarray) -> np.ndarray:
        if signal.size == 0: return signal
        Q1, Q3 = np.percentile(signal, [25, 75])
        IQR = Q3 - Q1
        if IQR < 1e-9:
            median, mad = np.median(signal), np.median(np.abs(signal - np.median(signal)))
            return np.zeros_like(signal) if mad < 1e-9 else (signal - median) / (mad + 1e-9)
        lower, upper = Q1 - 1.5 * IQR, Q3 + 1.5 * IQR
        clipped = np.clip(signal, lower, upper)
        s_min, s_max = np.min(clipped), np.max(clipped)
        return np.zeros_like(signal) if s_max == s_min else 2.0 * (clipped - s_min) / (s_max - s_min) - 1.0

    def _encode(self, signal: np.ndarray) -> np.ndarray:
        N = len(signal)
        if N == 0: return signal.astype(np.complex128)
        i = np.arange(N)
        theta = 2.0 * np.pi * i / N
        f_k, A_k = np.array([271, 341, 491]), np.array([0.033, 0.050, 0.100])
        phi = np.sum(A_k[:, None] * np.sin(2.0 * np.pi * f_k[:, None] * i / N), axis=0)
        Theta = theta + phi
        exp_iTheta = np.exp(1j * Theta)
        g, m = signal * exp_iTheta, np.abs(signal) * exp_iTheta
        return 0.5 * g + 0.5 * m

    def _apply_lens(self, encoded_signal: np.ndarray, lens_type: str):
        lens_fn = self.lens_library.get(lens_type)
        if not lens_fn: raise ValueError(f"Lens '{lens_type}' not found.")
        with np.errstate(all="ignore"):
            w = lens_fn(encoded_signal)
            phi_trajectory = self.c1 * np.angle(w) + self.c2 * np.abs(encoded_signal)
        finite_mask = np.isfinite(phi_trajectory)
        return phi_trajectory[finite_mask], w[finite_mask], encoded_signal[finite_mask], len(encoded_signal), len(phi_trajectory[finite_mask])
# ---------------------------------------------------------------
# Feature preparation and UMAP embedding
# ---------------------------------------------------------------
feature_cols = [c for c in df_combined.columns if c.startswith("feature_")]
features = np.nan_to_num(df_combined[feature_cols].to_numpy())
reducer = UMAP(n_components=3, n_neighbors=15, min_dist=0.1, random_state=42)
df_combined[["x", "y", "z"]] = reducer.fit_transform(features)
kmeans = KMeans(n_clusters=max(4, min(12, int(np.sqrt(len(df_combined))))), random_state=42, n_init=10)
df_combined["cluster"] = kmeans.fit_predict(features)
df_combined["chaos_score"] = np.log1p(df_combined.get("diag_srl_gamma", 0)) / (df_combined.get("diag_alpha_gamma", 1) + 1e-2)

# ---------------------------------------------------------------
# Core Visualization and Analysis Functions
# ---------------------------------------------------------------
def resolve_audio_path(row: pd.Series) -> str:
    """
    Intelligently reconstructs the full path to an audio file
    based on the logic from the data generation scripts.
    """
    basename = str(row.get("filepath", ""))
    source = row.get("source", "")
    label = row.get("label", "")

    # For "Dog" data, the structure is: {base_path}/{label}/{filename}
    if source == "Dog":
        expected_path = os.path.join(DOG_AUDIO_BASE_PATH, label, basename)
        if os.path.exists(expected_path):
            return expected_path

    # For "Human" data, we must search within all "Actor_XX" subfolders
    elif source == "Human":
        if os.path.isdir(HUMAN_AUDIO_BASE_PATH):
            for actor_folder in os.listdir(HUMAN_AUDIO_BASE_PATH):
                if actor_folder.startswith("Actor_"):
                    expected_path = os.path.join(HUMAN_AUDIO_BASE_PATH, actor_folder, basename)
                    if os.path.exists(expected_path):
                        return expected_path
    
    # Fallback for dummy data or other cases
    if os.path.exists(basename):
        return basename
    
    # If all else fails, return the original basename and let it error out with a clear message
    return basename

def get_cmt_data(filepath: str, lens: str):
    try:
        y, _ = sf.read(filepath)
        if y.ndim > 1: y = np.mean(y, axis=1)
    except Exception as e:
        print(f"Error reading audio file {filepath}: {e}")
        return None

    cmt = ExpandedCMT()
    normalized = cmt._robust_normalize(y)
    encoded = cmt._encode(normalized)
    
    # The _apply_lens function now returns additional diagnostic info
    phi, w, z, original_count, final_count = cmt._apply_lens(encoded, lens)

    return {
        "phi": phi, "w": w, "z": z,
        "original_count": original_count,
        "final_count": final_count
    }

def generate_holographic_field(z: np.ndarray, phi: np.ndarray, resolution: int):
    if z is None or phi is None or len(z) < 4: return None

    points = np.vstack([np.real(z), np.imag(z)]).T
    grid_x, grid_y = np.mgrid[
        np.min(points[:,0]):np.max(points[:,0]):complex(0, resolution),
        np.min(points[:,1]):np.max(points[:,1]):complex(0, resolution)
    ]

    grid_phi_real = griddata(points, np.real(phi), (grid_x, grid_y), method='cubic')
    grid_phi_imag = griddata(points, np.imag(phi), (grid_x, grid_y), method='cubic')

    grid_phi = np.nan_to_num(grid_phi_real + 1j * grid_phi_imag)

    return grid_x, grid_y, grid_phi

def create_holography_plot(z, phi, resolution, wavelength):
    field_data = generate_holographic_field(z, phi, resolution)
    if field_data is None: return go.Figure(layout={"title": "Not enough data for holography"})

    grid_x, grid_y, grid_phi = field_data
    mag_phi = np.abs(grid_phi)
    phase_phi = np.angle(grid_phi)

    # --- Wavelength to Colorscale Mapping ---
    def wavelength_to_rgb(wl):
        # Simple approximation to map visible spectrum to RGB
        if 380 <= wl < 440: return f'rgb({-(wl - 440) / (440 - 380) * 255}, 0, 255)' # Violet
        elif 440 <= wl < 495: return f'rgb(0, {(wl - 440) / (495 - 440) * 255}, 255)' # Blue
        elif 495 <= wl < 570: return f'rgb(0, 255, {-(wl - 570) / (570 - 495) * 255})' # Green
        elif 570 <= wl < 590: return f'rgb({(wl - 570) / (590 - 570) * 255}, 255, 0)' # Yellow
        elif 590 <= wl < 620: return f'rgb(255, {-(wl - 620) / (620 - 590) * 255}, 0)' # Orange
        elif 620 <= wl <= 750: return f'rgb(255, 0, 0)' # Red
        return 'rgb(255,255,255)'
    
    mid_color = wavelength_to_rgb(wavelength)
    custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']]


    fig = go.Figure()
    # 1. The Holographic Surface (Topology + Phase Interference)
    fig.add_trace(go.Surface(
        x=grid_x, y=grid_y, z=mag_phi,
        surfacecolor=phase_phi,
        colorscale=custom_colorscale,
        cmin=-np.pi, cmax=np.pi,
        colorbar=dict(title='Φ Phase'),
        name='Holographic Field',
        contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True, highlightwidth=10)
    ))
    # 2. The original data points projected onto the surface
    fig.add_trace(go.Scatter3d(
        x=np.real(z), y=np.imag(z), z=np.abs(phi) + 0.05, # slight offset
        mode='markers',
        marker=dict(size=3, color='black', symbol='x'),
        name='Data Points'
    ))
    # 3. The Vector Flow Field (using cones for direction)
    grad_y, grad_x = np.gradient(mag_phi)
    fig.add_trace(go.Cone(
        x=grid_x.flatten(), y=grid_y.flatten(), z=mag_phi.flatten(),
        u=-grad_x.flatten(), v=-grad_y.flatten(), w=np.full_like(mag_phi.flatten(), -0.1),
        sizemode="absolute", sizeref=0.1,
        anchor="tip",
        colorscale='Greys',
        showscale=False,
        name='Vector Flow'
    ))
    fig.update_layout(
        title="Interactive Holographic Field Reconstruction",
        scene=dict(
            xaxis_title="Re(z) - Encoded Signal",
            yaxis_title="Im(z) - Encoded Signal",
            zaxis_title="|Φ| - Field Magnitude"
        ),
        margin=dict(l=0, r=0, b=0, t=40)
    )
    return fig

def create_diagnostic_plots(z, w):
    """Creates a 2D plot showing the Aperture (z) and Lens Response (w)."""
    if z is None or w is None:
        return go.Figure(layout={"title": "Not enough data for diagnostic plots"})

    fig = go.Figure()

    # Aperture (Encoded Signal)
    fig.add_trace(go.Scatter(
        x=np.real(z), y=np.imag(z), mode='markers',
        marker=dict(size=5, color='blue', opacity=0.6),
        name='Aperture (z)'
    ))

    # Lens Response
    fig.add_trace(go.Scatter(
        x=np.real(w), y=np.imag(w), mode='markers',
        marker=dict(size=5, color='red', opacity=0.6, symbol='x'),
        name='Lens Response (w)'
    ))
    
    fig.update_layout(
        title="Diagnostic View: Aperture and Lens Response",
        xaxis_title="Real Part",
        yaxis_title="Imaginary Part",
        legend_title="Signal Stage",
        margin=dict(l=20, r=20, t=60, b=20)
    )
    return fig

def create_dual_holography_plot(z1, phi1, z2, phi2, resolution, wavelength, title1="Primary", title2="Comparison"):
    """Creates side-by-side holographic visualizations for comparison."""
    field_data1 = generate_holographic_field(z1, phi1, resolution)
    field_data2 = generate_holographic_field(z2, phi2, resolution)
    
    if field_data1 is None or field_data2 is None:
        return go.Figure(layout={"title": "Insufficient data for dual holography"})

    grid_x1, grid_y1, grid_phi1 = field_data1
    grid_x2, grid_y2, grid_phi2 = field_data2
    
    mag_phi1, phase_phi1 = np.abs(grid_phi1), np.angle(grid_phi1)
    mag_phi2, phase_phi2 = np.abs(grid_phi2), np.angle(grid_phi2)

    # Wavelength to colorscale mapping
    def wavelength_to_rgb(wl):
        if 380 <= wl < 440: return f'rgb({int(-(wl - 440) / (440 - 380) * 255)}, 0, 255)'
        elif 440 <= wl < 495: return f'rgb(0, {int((wl - 440) / (495 - 440) * 255)}, 255)'
        elif 495 <= wl < 570: return f'rgb(0, 255, {int(-(wl - 570) / (570 - 495) * 255)})'
        elif 570 <= wl < 590: return f'rgb({int((wl - 570) / (590 - 570) * 255)}, 255, 0)'
        elif 590 <= wl < 620: return f'rgb(255, {int(-(wl - 620) / (620 - 590) * 255)}, 0)'
        elif 620 <= wl <= 750: return 'rgb(255, 0, 0)'
        return 'rgb(255,255,255)'
    
    mid_color = wavelength_to_rgb(wavelength)
    custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']]

    fig = make_subplots(
        rows=1, cols=2,
        specs=[[{'type': 'scene'}, {'type': 'scene'}]],
        subplot_titles=[title1, title2]
    )

    # Left plot (Primary)
    fig.add_trace(go.Surface(
        x=grid_x1, y=grid_y1, z=mag_phi1,
        surfacecolor=phase_phi1,
        colorscale=custom_colorscale,
        cmin=-np.pi, cmax=np.pi,
        showscale=False,
        name=title1,
        contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True)
    ), row=1, col=1)
    
    # Right plot (Comparison)
    fig.add_trace(go.Surface(
        x=grid_x2, y=grid_y2, z=mag_phi2,
        surfacecolor=phase_phi2,
        colorscale=custom_colorscale,
        cmin=-np.pi, cmax=np.pi,
        showscale=False,
        name=title2,
        contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True)
    ), row=1, col=2)

    # Add data points
    if z1 is not None and phi1 is not None:
        fig.add_trace(go.Scatter3d(
            x=np.real(z1), y=np.imag(z1), z=np.abs(phi1) + 0.05,
            mode='markers', marker=dict(size=3, color='black', symbol='x'),
            name=f'{title1} Points', showlegend=False
        ), row=1, col=1)
    
    if z2 is not None and phi2 is not None:
        fig.add_trace(go.Scatter3d(
            x=np.real(z2), y=np.imag(z2), z=np.abs(phi2) + 0.05,
            mode='markers', marker=dict(size=3, color='black', symbol='x'),
            name=f'{title2} Points', showlegend=False
        ), row=1, col=2)

    fig.update_layout(
        title="Side-by-Side Cross-Species Holographic Comparison",
        scene=dict(
            xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Φ|",
            camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
        ),
        scene2=dict(
            xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Φ|",
            camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
        ),
        margin=dict(l=0, r=0, b=0, t=60),
        height=600
    )
    return fig

def create_dual_diagnostic_plots(z1, w1, z2, w2, title1="Primary", title2="Comparison"):
    """Creates side-by-side diagnostic plots for cross-species comparison."""
    fig = make_subplots(
        rows=1, cols=2,
        subplot_titles=[f"{title1}: Aperture & Lens Response", f"{title2}: Aperture & Lens Response"]
    )

    if z1 is not None and w1 is not None:
        # Primary aperture and response
        fig.add_trace(go.Scatter(
            x=np.real(z1), y=np.imag(z1), mode='markers',
            marker=dict(size=5, color='blue', opacity=0.6),
            name=f'{title1} Aperture', showlegend=True
        ), row=1, col=1)
        
        fig.add_trace(go.Scatter(
            x=np.real(w1), y=np.imag(w1), mode='markers',
            marker=dict(size=5, color='red', opacity=0.6, symbol='x'),
            name=f'{title1} Response', showlegend=True
        ), row=1, col=1)

    if z2 is not None and w2 is not None:
        # Comparison aperture and response
        fig.add_trace(go.Scatter(
            x=np.real(z2), y=np.imag(z2), mode='markers',
            marker=dict(size=5, color='darkblue', opacity=0.6),
            name=f'{title2} Aperture', showlegend=True
        ), row=1, col=2)
        
        fig.add_trace(go.Scatter(
            x=np.real(w2), y=np.imag(w2), mode='markers',
            marker=dict(size=5, color='darkred', opacity=0.6, symbol='x'),
            name=f'{title2} Response', showlegend=True
        ), row=1, col=2)

    fig.update_layout(
        title="Cross-Species Diagnostic Comparison",
        height=400,
        margin=dict(l=20, r=20, t=60, b=20)
    )
    fig.update_xaxes(title_text="Real Part", row=1, col=1)
    fig.update_yaxes(title_text="Imaginary Part", row=1, col=1)
    fig.update_xaxes(title_text="Real Part", row=1, col=2)
    fig.update_yaxes(title_text="Imaginary Part", row=1, col=2)
    
    return fig


def create_entropy_geometry_plot(phi: np.ndarray):
    """Creates a plot showing magnitude/phase distributions and their entropy."""
    if phi is None or len(phi) < 2:
        return go.Figure(layout={"title": "Not enough data for entropy analysis"})

    magnitudes = np.abs(phi)
    phases = np.angle(phi)

    # Calculate entropy
    mag_hist, _ = np.histogram(magnitudes, bins='auto', density=True)
    phase_hist, _ = np.histogram(phases, bins='auto', density=True)
    mag_entropy = shannon_entropy(mag_hist)
    phase_entropy = shannon_entropy(phase_hist)

    fig = make_subplots(rows=1, cols=2, subplot_titles=(
        f"Magnitude Distribution (Entropy: {mag_entropy:.3f})",
        f"Phase Distribution (Entropy: {phase_entropy:.3f})"
    ))

    fig.add_trace(go.Histogram(x=magnitudes, name='Magnitude', nbinsx=50), row=1, col=1)
    fig.add_trace(go.Histogram(x=phases, name='Phase', nbinsx=50), row=1, col=2)

    fig.update_layout(
        title_text="Informational-Entropy Geometry",
        showlegend=False,
        bargap=0.1,
        margin=dict(l=20, r=20, t=60, b=20)
    )
    fig.update_xaxes(title_text="|Φ|", row=1, col=1)
    fig.update_yaxes(title_text="Count", row=1, col=1)
    fig.update_xaxes(title_text="angle(Φ)", row=1, col=2)
    fig.update_yaxes(title_text="Count", row=1, col=2)

    return fig

# ---------------------------------------------------------------
# Gradio UI
# ---------------------------------------------------------------
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="cyan")) as demo:
    gr.Markdown("# Exhaustive CMT Explorer for Interspecies Communication v3.2")
    file_choices = df_combined["filepath"].astype(str).tolist()
    default_primary = file_choices[0] if file_choices else ""

    with gr.Tabs():
        with gr.TabItem("Unified Manifold"):
            gr.Plot(value=lambda: go.Figure(data=[go.Scatter3d(
                x=df_combined["x"], y=df_combined["y"], z=df_combined["z"],
                mode="markers", marker=dict(color=df_combined["cluster"], size=5, colorscale="Viridis", showscale=True, colorbar={"title": "Cluster ID"}),
                text=df_combined.apply(lambda r: f"{r['source']}: {r.get('label', '')}<br>File: {r['filepath']}", axis=1),
                hoverinfo="text"
            )], layout=dict(title="Communication Manifold (UMAP Projection)")), label="UMAP Manifold")
        
        with gr.TabItem("Interactive Holography"):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### Cross-Species Holography Controls")
                    
                    # Species selection and automatic pairing
                    species_dropdown = gr.Dropdown(
                        label="Select Species", 
                        choices=["Dog", "Human"], 
                        value="Dog"
                    )
                    
                    # Primary file selection (filtered by species)
                    primary_dropdown = gr.Dropdown(
                        label="Primary Audio File", 
                        choices=[], 
                        value=""
                    )
                    
                    # Automatically found neighbor (from opposite species)
                    neighbor_dropdown = gr.Dropdown(
                        label="Auto-Found Cross-Species Neighbor", 
                        choices=[], 
                        value="",
                        interactive=True  # Allow manual override
                    )
                    
                    holo_lens_dropdown = gr.Dropdown(label="CMT Lens", choices=["gamma", "zeta", "airy", "bessel"], value="gamma")
                    holo_resolution_slider = gr.Slider(label="Field Resolution", minimum=20, maximum=100, step=5, value=40)
                    holo_wavelength_slider = gr.Slider(label="Illumination Wavelength (nm)", minimum=380, maximum=750, step=5, value=550)
                    
                    # Information panels
                    primary_info_html = gr.HTML(label="Primary Audio Info")
                    neighbor_info_html = gr.HTML(label="Neighbor Audio Info")
                    
                    # Audio players
                    primary_audio_out = gr.Audio(label="Primary Audio")
                    neighbor_audio_out = gr.Audio(label="Neighbor Audio")
                    
                with gr.Column(scale=2):
                    dual_holography_plot = gr.Plot(label="Side-by-Side Holographic Comparison")
                    dual_diagnostic_plot = gr.Plot(label="Cross-Species Diagnostic Comparison")

            def update_file_choices(species):
                """Update the primary file dropdown based on selected species."""
                species_files = df_combined[df_combined["source"] == species]["filepath"].astype(str).tolist()
                return gr.Dropdown.update(choices=species_files, value=species_files[0] if species_files else "")

            def update_cross_species_view(species, primary_file, neighbor_file, lens, resolution, wavelength):
                if not primary_file:
                    empty_fig = go.Figure(layout={"title": "Please select a primary file."})
                    return empty_fig, empty_fig, "", "", None, None, []

                # Get primary row
                primary_row = df_combined[
                    (df_combined["filepath"] == primary_file) & 
                    (df_combined["source"] == species)
                ].iloc[0] if len(df_combined[
                    (df_combined["filepath"] == primary_file) & 
                    (df_combined["source"] == species)
                ]) > 0 else None
                
                if primary_row is None:
                    empty_fig = go.Figure(layout={"title": "Primary file not found."})
                    return empty_fig, empty_fig, "", "", None, None, []

                # Find cross-species neighbor if not manually selected
                if not neighbor_file:
                    neighbor_row = find_nearest_cross_species_neighbor(primary_row, df_combined)
                    if neighbor_row is not None:
                        neighbor_file = neighbor_row['filepath']
                else:
                    # Get manually selected neighbor
                    opposite_species = 'Human' if species == 'Dog' else 'Dog'
                    neighbor_row = df_combined[
                        (df_combined["filepath"] == neighbor_file) & 
                        (df_combined["source"] == opposite_species)
                    ].iloc[0] if len(df_combined[
                        (df_combined["filepath"] == neighbor_file) & 
                        (df_combined["source"] == opposite_species)
                    ]) > 0 else None

                # Get CMT data for both files
                primary_fp = resolve_audio_path(primary_row)
                primary_cmt = get_cmt_data(primary_fp, lens)
                
                neighbor_cmt = None
                if neighbor_row is not None:
                    neighbor_fp = resolve_audio_path(neighbor_row)
                    neighbor_cmt = get_cmt_data(neighbor_fp, lens)

                # Create visualizations
                if primary_cmt and neighbor_cmt:
                    primary_title = f"{species}: {primary_row.get('label', 'Unknown')}"
                    neighbor_title = f"{neighbor_row['source']}: {neighbor_row.get('label', 'Unknown')}"
                    
                    dual_holo_fig = create_dual_holography_plot(
                        primary_cmt["z"], primary_cmt["phi"],
                        neighbor_cmt["z"], neighbor_cmt["phi"],
                        resolution, wavelength, primary_title, neighbor_title
                    )
                    
                    dual_diag_fig = create_dual_diagnostic_plots(
                        primary_cmt["z"], primary_cmt["w"],
                        neighbor_cmt["z"], neighbor_cmt["w"],
                        primary_title, neighbor_title
                    )
                else:
                    dual_holo_fig = go.Figure(layout={"title": "Error processing audio files"})
                    dual_diag_fig = go.Figure(layout={"title": "Error processing audio files"})

                # Build info strings
                primary_info = f"""
                <b>Primary:</b> {primary_row['filepath']}<br>
                <b>Species:</b> {primary_row['source']}<br>
                <b>Label:</b> {primary_row.get('label', 'N/A')}<br>
                <b>Data Points:</b> {primary_cmt['final_count'] if primary_cmt else 0} / {primary_cmt['original_count'] if primary_cmt else 0}
                """
                
                neighbor_info = ""
                if neighbor_row is not None:
                    neighbor_info = f"""
                    <b>Neighbor:</b> {neighbor_row['filepath']}<br>
                    <b>Species:</b> {neighbor_row['source']}<br>
                    <b>Label:</b> {neighbor_row.get('label', 'N/A')}<br>
                    <b>Data Points:</b> {neighbor_cmt['final_count'] if neighbor_cmt else 0} / {neighbor_cmt['original_count'] if neighbor_cmt else 0}
                    """

                # Update neighbor dropdown choices
                opposite_species = 'Human' if species == 'Dog' else 'Dog'
                neighbor_choices = df_combined[df_combined["source"] == opposite_species]["filepath"].astype(str).tolist()
                
                # Audio files
                primary_audio = primary_fp if primary_fp and os.path.exists(primary_fp) else None
                neighbor_audio = neighbor_fp if neighbor_row and neighbor_fp and os.path.exists(neighbor_fp) else None

                return (dual_holo_fig, dual_diag_fig, primary_info, neighbor_info, 
                        primary_audio, neighbor_audio, 
                        gr.Dropdown.update(choices=neighbor_choices, value=neighbor_file if neighbor_row else ""))

            # Event handlers
            species_dropdown.change(
                update_file_choices,
                inputs=[species_dropdown],
                outputs=[primary_dropdown]
            )

            cross_species_inputs = [species_dropdown, primary_dropdown, neighbor_dropdown, 
                                  holo_lens_dropdown, holo_resolution_slider, holo_wavelength_slider]
            cross_species_outputs = [dual_holography_plot, dual_diagnostic_plot, 
                                   primary_info_html, neighbor_info_html,
                                   primary_audio_out, neighbor_audio_out, neighbor_dropdown]

            for component in cross_species_inputs:
                component.change(update_cross_species_view, 
                               inputs=cross_species_inputs, 
                               outputs=cross_species_outputs)

            # Initialize on load
            demo.load(lambda: update_file_choices("Dog"), outputs=[primary_dropdown])
            demo.load(update_cross_species_view, 
                     inputs=cross_species_inputs, 
                     outputs=cross_species_outputs)

if __name__ == "__main__":
    demo.launch(share=True, debug=True)