import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel import torch import requests import json import shutil, os offload_folder = "offload/" # 如果是文件,删掉 if os.path.isfile(offload_folder): os.remove(offload_folder) # 如果目录不存在,创建 if not os.path.exists(offload_folder): os.makedirs(offload_folder) offload_folder = "offload/" print(f"路径是否存在: {os.path.exists(offload_folder)}") print(f"是否是目录: {os.path.isdir(offload_folder)}") print(f"是否是文件: {os.path.isfile(offload_folder)}") os.makedirs(offload_folder, exist_ok=True) model_id = "deepseek-ai/deepseek-coder-1.3b-base" lora_id = "Seunggg/lora-plant" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) base = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", offload_folder=offload_folder, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, trust_remote_code=True ) model = PeftModel.from_pretrained( base, lora_id, device_map="auto", torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 ) model.eval() from transformers import pipeline pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, device_map="auto", max_new_tokens=256 ) def get_sensor_data(): try: sensor_response = requests.get("https://arduino-realtime.onrender.com/api/data", timeout=5) sensor_data = sensor_response.json().get("sensorData", None) return json.dumps(sensor_data, ensure_ascii=False, indent=2) if sensor_data else "暂无传感器数据" except Exception as e: return "⚠️ 获取失败:" + str(e) def respond(user_input): sensor_display = get_sensor_data() if not user_input.strip(): return sensor_display, "请输入植物相关的问题 😊" prompt = f"用户提问:{user_input}\n" try: sensor_response = requests.get("https://arduino-realtime.onrender.com/api/data", timeout=5) sensor_data = sensor_response.json().get("sensorData", None) if sensor_data: prompt += f"当前传感器数据:{json.dumps(sensor_data, ensure_ascii=False)}\n" prompt += "请用更人性化的语言生成建议,并推荐相关植物文献或资料。\n回答:" result = pipe(prompt) full_output = result[0]["generated_text"] answer = full_output.replace(prompt, "").strip() except Exception as e: answer = f"生成建议时出错:{str(e)}" return sensor_display, answer def auto_update_sensor(): return gr.Textbox.update(value=get_sensor_data()) with gr.Blocks() as demo: gr.Markdown("# 🌱 植物助手 - 实时联动版") sensor_box = gr.Textbox(label="🧪 当前传感器数据", lines=6, interactive=False) question = gr.Textbox(label="植物问题", lines=4, placeholder="请输入植物相关的问题 😊") answer_box = gr.Textbox(label="🤖 回答建议", lines=8, interactive=False) send_btn = gr.Button("发送") demo.load(fn=get_sensor_data, inputs=None, outputs=sensor_box, every=5) send_btn.click(fn=respond, inputs=question, outputs=[sensor_box, answer_box]) demo.launch()