Update app.py
Browse files
app.py
CHANGED
@@ -4,25 +4,6 @@ from peft import PeftModel
|
|
4 |
import torch
|
5 |
import requests
|
6 |
import json
|
7 |
-
import shutil, os
|
8 |
-
|
9 |
-
offload_folder = "offload/"
|
10 |
-
|
11 |
-
# 如果是文件,删掉
|
12 |
-
if os.path.isfile(offload_folder):
|
13 |
-
os.remove(offload_folder)
|
14 |
-
|
15 |
-
# 如果目录不存在,创建
|
16 |
-
if not os.path.exists(offload_folder):
|
17 |
-
os.makedirs(offload_folder)
|
18 |
-
|
19 |
-
|
20 |
-
offload_folder = "offload/"
|
21 |
-
print(f"路径是否存在: {os.path.exists(offload_folder)}")
|
22 |
-
print(f"是否是目录: {os.path.isdir(offload_folder)}")
|
23 |
-
print(f"是否是文件: {os.path.isfile(offload_folder)}")
|
24 |
-
|
25 |
-
os.makedirs(offload_folder, exist_ok=True)
|
26 |
|
27 |
model_id = "deepseek-ai/deepseek-coder-1.3b-base"
|
28 |
lora_id = "Seunggg/lora-plant"
|
@@ -31,20 +12,15 @@ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
|
31 |
|
32 |
base = AutoModelForCausalLM.from_pretrained(
|
33 |
model_id,
|
34 |
-
|
35 |
-
offload_folder=offload_folder,
|
36 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
37 |
trust_remote_code=True
|
38 |
)
|
39 |
|
40 |
-
|
41 |
model = PeftModel.from_pretrained(
|
42 |
base,
|
43 |
lora_id,
|
44 |
-
|
45 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
46 |
)
|
47 |
-
|
48 |
model.eval()
|
49 |
|
50 |
from transformers import pipeline
|
@@ -52,48 +28,57 @@ pipe = pipeline(
|
|
52 |
"text-generation",
|
53 |
model=model,
|
54 |
tokenizer=tokenizer,
|
55 |
-
device_map="auto",
|
56 |
max_new_tokens=256
|
57 |
)
|
58 |
|
59 |
def get_sensor_data():
|
60 |
try:
|
61 |
-
|
62 |
-
sensor_data =
|
63 |
-
return
|
64 |
except Exception as e:
|
65 |
-
return "
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
def
|
68 |
-
sensor_display = get_sensor_data()
|
69 |
if not user_input.strip():
|
70 |
-
return
|
71 |
-
prompt = f"用户提问:{user_input}\n"
|
72 |
try:
|
73 |
-
sensor_response = requests.get("https://arduino-realtime.onrender.com/api/data", timeout=5)
|
74 |
-
sensor_data = sensor_response.json().get("sensorData", None)
|
75 |
-
if sensor_data:
|
76 |
-
prompt += f"当前传感器数据:{json.dumps(sensor_data, ensure_ascii=False)}\n"
|
77 |
-
prompt += "请用更人性化的语言生成建议,并推荐相关植物文献或资料。\n回答:"
|
78 |
result = pipe(prompt)
|
79 |
-
|
80 |
-
|
81 |
except Exception as e:
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
with gr.Blocks() as demo:
|
89 |
-
gr.Markdown("# 🌱 植物助手 -
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
93 |
answer_box = gr.Textbox(label="🤖 回答建议", lines=8, interactive=False)
|
94 |
send_btn = gr.Button("发送")
|
95 |
|
96 |
-
demo.load(fn=
|
97 |
-
|
|
|
98 |
|
99 |
-
demo.launch()
|
|
|
4 |
import torch
|
5 |
import requests
|
6 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
model_id = "deepseek-ai/deepseek-coder-1.3b-base"
|
9 |
lora_id = "Seunggg/lora-plant"
|
|
|
12 |
|
13 |
base = AutoModelForCausalLM.from_pretrained(
|
14 |
model_id,
|
15 |
+
torch_dtype=torch.float32, # Hugging Face Spaces 一般用 float32
|
|
|
|
|
16 |
trust_remote_code=True
|
17 |
)
|
18 |
|
|
|
19 |
model = PeftModel.from_pretrained(
|
20 |
base,
|
21 |
lora_id,
|
22 |
+
torch_dtype=torch.float32
|
|
|
23 |
)
|
|
|
24 |
model.eval()
|
25 |
|
26 |
from transformers import pipeline
|
|
|
28 |
"text-generation",
|
29 |
model=model,
|
30 |
tokenizer=tokenizer,
|
|
|
31 |
max_new_tokens=256
|
32 |
)
|
33 |
|
34 |
def get_sensor_data():
|
35 |
try:
|
36 |
+
res = requests.get("https://arduino-realtime.onrender.com/api/data", timeout=5)
|
37 |
+
sensor_data = res.json().get("sensorData", None)
|
38 |
+
return sensor_data if sensor_data else {}
|
39 |
except Exception as e:
|
40 |
+
return {"错误": str(e)}
|
41 |
+
|
42 |
+
def sensor_display_text():
|
43 |
+
sensor_data = get_sensor_data()
|
44 |
+
return json.dumps(sensor_data, ensure_ascii=False, indent=2) if sensor_data else "暂无传感器数据"
|
45 |
|
46 |
+
def generate_answer(user_input):
|
|
|
47 |
if not user_input.strip():
|
48 |
+
return "请输入植物相关的问题 😊"
|
49 |
+
prompt = f"用户提问:{user_input}\n请用更人性化的语言生成建议,并推荐相关植物文献或资料。\n回答:"
|
50 |
try:
|
|
|
|
|
|
|
|
|
|
|
51 |
result = pipe(prompt)
|
52 |
+
output = result[0]["generated_text"]
|
53 |
+
return output.replace(prompt, "").strip()
|
54 |
except Exception as e:
|
55 |
+
return f"生成建议时出错:{str(e)}"
|
56 |
+
|
57 |
+
def update_chart():
|
58 |
+
sensor_data = get_sensor_data()
|
59 |
+
if not sensor_data or "温度" not in sensor_data:
|
60 |
+
return gr.LinePlot.update(value=None)
|
61 |
+
return {
|
62 |
+
"data": [
|
63 |
+
{"x": [0], "y": [sensor_data.get("温度", 0)], "name": "温度"},
|
64 |
+
{"x": [0], "y": [sensor_data.get("湿度", 0)], "name": "湿度"}
|
65 |
+
],
|
66 |
+
"layout": {"title": "实时传感器数据"}
|
67 |
+
}
|
68 |
|
69 |
with gr.Blocks() as demo:
|
70 |
+
gr.Markdown("# 🌱 植物助手 - 实时传感器联动")
|
71 |
+
|
72 |
+
with gr.Row():
|
73 |
+
sensor_box = gr.Textbox(label="🧪 当前传感器数据", lines=6, interactive=False)
|
74 |
+
chart = gr.LinePlot(label="📈 实时数据图表", x="x", y="y", overlay=True)
|
75 |
+
|
76 |
+
question = gr.Textbox(label="🌿 植物问题", lines=4, placeholder="请输入植物相关的问题 😊")
|
77 |
answer_box = gr.Textbox(label="🤖 回答建议", lines=8, interactive=False)
|
78 |
send_btn = gr.Button("发送")
|
79 |
|
80 |
+
demo.load(fn=sensor_display_text, inputs=None, outputs=sensor_box, every=5)
|
81 |
+
demo.load(fn=update_chart, inputs=None, outputs=chart, every=5)
|
82 |
+
send_btn.click(fn=generate_answer, inputs=question, outputs=answer_box)
|
83 |
|
84 |
+
demo.launch()
|