000 / app.py
Seunggg's picture
Update app.py
c80b246 verified
raw
history blame
3.62 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
import requests
import json
model_id = "deepseek-ai/deepseek-coder-1.3b-base"
lora_id = "Seunggg/lora-plant"
# 加载 tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
# 加载基础模型,启用自动设备分配并脱载
base = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
offload_folder="offload/",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
trust_remote_code=True
)
# 加载 LoRA adapter,同样启用脱载
model = PeftModel.from_pretrained(
base,
lora_id,
offload_folder="offload/",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
model.eval()
# 生成 pipeline
from transformers import pipeline
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
max_new_tokens=256
)
from ask_api import ask_with_sensor # 引入调用函数
def get_sensor_data():
try:
sensor_response = requests.get("https://arduino-realtime.onrender.com/api/data", timeout=5)
sensor_data = sensor_response.json().get("sensorData", None)
sensor_display = json.dumps(sensor_data, ensure_ascii=False, indent=2) if sensor_data else "暂无传感器数据"
except Exception as e:
sensor_display = "⚠️ 获取失败:" + str(e)
return sensor_display
def show_sensor_data(_=None):
return get_sensor_data()
def respond(user_input):
sensor_display = get_sensor_data()
if not user_input.strip():
return sensor_display, "请输入植物相关的问题 😊"
prompt = f"用户提问:{user_input}\n"
try:
sensor_response = requests.get("https://arduino-realtime.onrender.com/api/data", timeout=5)
sensor_data = sensor_response.json().get("sensorData", None)
if sensor_data:
prompt += f"当前传感器数据:{json.dumps(sensor_data, ensure_ascii=False)}\n"
prompt += "请用更人性化的语言生成建议,并推荐相关植物文献或资料。\n回答:"
result = pipe(prompt)
full_output = result[0]["generated_text"]
answer = full_output.replace(prompt, "").strip()
except Exception as e:
answer = f"生成建议时出错:{str(e)}"
return sensor_display, answer
# 构建提示词
prompt = f"用户提问:{user_input}\n"
if sensor_data:
prompt += f"当前传感器数据:{json.dumps(sensor_data, ensure_ascii=False)}\n"
prompt += "请用更人性化的语言生成建议,并推荐相关植物文献或资料。\n回答:"
# 模型生成
try:
result = pipe(prompt)
full_output = result[0]["generated_text"]
# 删除重复的提问部分,只保留回答段
answer = full_output.replace(prompt, "").strip()
except Exception as e:
answer = f"生成建议时出错:{str(e)}"
# Gradio 界面
with gr.Blocks() as demo:
with gr.Row():
sensor_box = gr.Textbox(label="🧪 当前传感器数据", lines=6, interactive=False)
question_box = gr.Textbox(label="🌿 植物问题", lines=4)
answer_box = gr.Textbox(label="🤖 回答建议", lines=8, interactive=False)
# 实时轮询,每 2 秒自动更新
sensor_box.change(fn=show_sensor_data, inputs=None, outputs=sensor_box).every(2)
# 用户提问后,更新传感器 + 回答
question_box.submit(fn=respond, inputs=question_box, outputs=[sensor_box, answer_box])
demo.launch()