File size: 3,303 Bytes
fd45282
75ecc06
 
fd45282
abc9568
f5f891b
4a2e45e
 
fa83b7a
 
 
 
 
 
 
 
 
 
 
862a827
83ad7e6
 
 
 
3020aee
c0ba1b5
75ecc06
 
 
 
 
 
 
 
4a2e45e
75ecc06
 
 
 
4a2e45e
75ecc06
 
 
e5c24a4
75ecc06
 
 
 
 
 
 
 
 
 
 
 
 
 
c80b246
14c753e
1c0fdf3
 
6727ea8
1c0fdf3
6727ea8
c80b246
 
 
 
 
 
1c0fdf3
c80b246
 
 
 
 
1c0fdf3
c80b246
 
1c0fdf3
abc9568
 
75ecc06
0316dcf
 
 
 
ba7f366
 
0316dcf
ba7f366
0316dcf
ba7f366
0316dcf
ba7f366
 
7ea3332
ba7f366
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
import requests
import json
import shutil, os

offload_folder = "offload/"

# 如果是文件,删掉
if os.path.isfile(offload_folder):
    os.remove(offload_folder)

# 如果目录不存在,创建
if not os.path.exists(offload_folder):
    os.makedirs(offload_folder)


offload_folder = "offload/"
print(f"路径是否存在: {os.path.exists(offload_folder)}")
print(f"是否是目录: {os.path.isdir(offload_folder)}")
print(f"是否是文件: {os.path.isfile(offload_folder)}")

os.makedirs(offload_folder, exist_ok=True)

model_id = "deepseek-ai/deepseek-coder-1.3b-base"
lora_id = "Seunggg/lora-plant"

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)

base = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    offload_folder=offload_folder,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    trust_remote_code=True
)


model = PeftModel.from_pretrained(
    base,
    lora_id,
    device_map="auto",
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)

model.eval()

from transformers import pipeline
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    device_map="auto",
    max_new_tokens=256
)

def get_sensor_data():
    try:
        sensor_response = requests.get("https://arduino-realtime.onrender.com/api/data", timeout=5)
        sensor_data = sensor_response.json().get("sensorData", None)
        return json.dumps(sensor_data, ensure_ascii=False, indent=2) if sensor_data else "暂无传感器数据"
    except Exception as e:
        return "⚠️ 获取失败:" + str(e)

def respond(user_input):
    sensor_display = get_sensor_data()
    if not user_input.strip():
        return sensor_display, "请输入植物相关的问题 😊"
    prompt = f"用户提问:{user_input}\n"
    try:
        sensor_response = requests.get("https://arduino-realtime.onrender.com/api/data", timeout=5)
        sensor_data = sensor_response.json().get("sensorData", None)
        if sensor_data:
            prompt += f"当前传感器数据:{json.dumps(sensor_data, ensure_ascii=False)}\n"
        prompt += "请用更人性化的语言生成建议,并推荐相关植物文献或资料。\n回答:"
        result = pipe(prompt)
        full_output = result[0]["generated_text"]
        answer = full_output.replace(prompt, "").strip()
    except Exception as e:
        answer = f"生成建议时出错:{str(e)}"
    return sensor_display, answer

def auto_update_sensor():
    return gr.Textbox.update(value=get_sensor_data())

with gr.Blocks() as demo:
    gr.Markdown("# 🌱 植物助手 - 实时联动版")
    
    sensor_box = gr.Textbox(label="🧪 当前传感器数据", lines=6, interactive=False)
    question = gr.Textbox(label="植物问题", lines=4, placeholder="请输入植物相关的问题 😊")
    answer_box = gr.Textbox(label="🤖 回答建议", lines=8, interactive=False)
    send_btn = gr.Button("发送")

    demo.load(fn=get_sensor_data, inputs=None, outputs=sensor_box, every=5)
    send_btn.click(fn=respond, inputs=question, outputs=[sensor_box, answer_box])

demo.launch()