File size: 2,851 Bytes
fd45282
75ecc06
 
fd45282
abc9568
f5f891b
c0ba1b5
75ecc06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c24a4
75ecc06
 
 
 
 
 
 
 
 
 
 
 
 
 
c80b246
14c753e
1c0fdf3
 
6727ea8
1c0fdf3
6727ea8
c80b246
 
 
 
 
 
1c0fdf3
c80b246
 
 
 
 
1c0fdf3
c80b246
 
1c0fdf3
abc9568
 
75ecc06
0316dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
7ea3332
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
import requests
import json

model_id = "deepseek-ai/deepseek-coder-1.3b-base"
lora_id = "Seunggg/lora-plant"

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)

base = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    offload_folder="offload/",
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    trust_remote_code=True
)

model = PeftModel.from_pretrained(
    base,
    lora_id,
    device_map="auto",
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)

model.eval()

from transformers import pipeline
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    device_map="auto",
    max_new_tokens=256
)

def get_sensor_data():
    try:
        sensor_response = requests.get("https://arduino-realtime.onrender.com/api/data", timeout=5)
        sensor_data = sensor_response.json().get("sensorData", None)
        return json.dumps(sensor_data, ensure_ascii=False, indent=2) if sensor_data else "暂无传感器数据"
    except Exception as e:
        return "⚠️ 获取失败:" + str(e)

def respond(user_input):
    sensor_display = get_sensor_data()
    if not user_input.strip():
        return sensor_display, "请输入植物相关的问题 😊"
    prompt = f"用户提问:{user_input}\n"
    try:
        sensor_response = requests.get("https://arduino-realtime.onrender.com/api/data", timeout=5)
        sensor_data = sensor_response.json().get("sensorData", None)
        if sensor_data:
            prompt += f"当前传感器数据:{json.dumps(sensor_data, ensure_ascii=False)}\n"
        prompt += "请用更人性化的语言生成建议,并推荐相关植物文献或资料。\n回答:"
        result = pipe(prompt)
        full_output = result[0]["generated_text"]
        answer = full_output.replace(prompt, "").strip()
    except Exception as e:
        answer = f"生成建议时出错:{str(e)}"
    return sensor_display, answer

def auto_update_sensor():
    return gr.Textbox.update(value=get_sensor_data())

with gr.Blocks() as demo:
    gr.Markdown("## 🌱 植物助手 - 实时联动版\n结合 Render 实时传感器数据 + 本地 LoRA 模型,生成更合理建议。")

    sensor_box = gr.Textbox(label="🧪 当前传感器数据", lines=6, interactive=False)
    user_input = gr.Textbox(label="植物问题", lines=4)
    answer_box = gr.Textbox(label="🤖 回答建议", lines=8, interactive=False)

    user_input.submit(fn=respond, inputs=user_input, outputs=[sensor_box, answer_box])

    # 自动刷新传感器数据,每 5 秒
    demo.load(fn=auto_update_sensor, inputs=None, outputs=sensor_box, every=5)

demo.launch()