Spaces:
Build error
Build error
Create loosecontrol.py
Browse files- loosecontrol.py +135 -0
loosecontrol.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import (
|
2 |
+
ControlNetModel,
|
3 |
+
StableDiffusionControlNetPipeline,
|
4 |
+
UniPCMultistepScheduler,
|
5 |
+
)
|
6 |
+
import torch
|
7 |
+
import PIL
|
8 |
+
import PIL.Image
|
9 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
10 |
+
from typing import Dict
|
11 |
+
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
12 |
+
import functools
|
13 |
+
from cross_frame_attention import CrossFrameAttnProcessor
|
14 |
+
|
15 |
+
TEXT_ENCODER_NAME = "text_encoder"
|
16 |
+
UNET_NAME = "unet"
|
17 |
+
NEGATIVE_PROMPT = "blurry, text, caption, lowquality, lowresolution, low res, grainy, ugly"
|
18 |
+
|
19 |
+
def attach_loaders_mixin(model):
|
20 |
+
# hacky way to make ControlNet work with LoRA. This may not be required in future versions of diffusers.
|
21 |
+
model.text_encoder_name = TEXT_ENCODER_NAME
|
22 |
+
model.unet_name = UNET_NAME
|
23 |
+
r"""
|
24 |
+
Attach the [`UNet2DConditionLoadersMixin`] to a model. This will add the
|
25 |
+
all the methods from the mixin 'UNet2DConditionLoadersMixin' to the model.
|
26 |
+
"""
|
27 |
+
# mixin_instance = UNet2DConditionLoadersMixin()
|
28 |
+
for attr_name, attr_value in vars(UNet2DConditionLoadersMixin).items():
|
29 |
+
# print(attr_name)
|
30 |
+
if callable(attr_value):
|
31 |
+
# setattr(model, attr_name, functools.partialmethod(attr_value, model).__get__(model, model.__class__))
|
32 |
+
setattr(model, attr_name, functools.partial(attr_value, model))
|
33 |
+
return model
|
34 |
+
|
35 |
+
def set_attn_processor(module, processor, _remove_lora=False):
|
36 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
37 |
+
if hasattr(module, "set_processor"):
|
38 |
+
if not isinstance(processor, dict):
|
39 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
40 |
+
else:
|
41 |
+
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
42 |
+
|
43 |
+
for sub_name, child in module.named_children():
|
44 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
45 |
+
|
46 |
+
for name, module in module.named_children():
|
47 |
+
fn_recursive_attn_processor(name, module, processor)
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
class ControlNetX(ControlNetModel, UNet2DConditionLoadersMixin):
|
52 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
53 |
+
# This may not be required in future versions of diffusers.
|
54 |
+
@property
|
55 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
56 |
+
r"""
|
57 |
+
Returns:
|
58 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
59 |
+
indexed by its weight name.
|
60 |
+
"""
|
61 |
+
# set recursively
|
62 |
+
processors = {}
|
63 |
+
|
64 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
65 |
+
if hasattr(module, "get_processor"):
|
66 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
67 |
+
|
68 |
+
for sub_name, child in module.named_children():
|
69 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
70 |
+
|
71 |
+
return processors
|
72 |
+
|
73 |
+
for name, module in self.named_children():
|
74 |
+
fn_recursive_add_processors(name, module, processors)
|
75 |
+
|
76 |
+
return processors
|
77 |
+
|
78 |
+
class ControlNetPipeline:
|
79 |
+
def __init__(self, checkpoint="lllyasviel/control_v11f1p_sd15_depth", sd_checkpoint="runwayml/stable-diffusion-v1-5") -> None:
|
80 |
+
controlnet = ControlNetX.from_pretrained(checkpoint)
|
81 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
82 |
+
sd_checkpoint, controlnet=controlnet, requires_safety_checker=False, safety_checker=None,
|
83 |
+
torch_dtype=torch.float16)
|
84 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
85 |
+
|
86 |
+
@torch.no_grad()
|
87 |
+
def __call__(self,
|
88 |
+
prompt: str="",
|
89 |
+
height=512,
|
90 |
+
width=512,
|
91 |
+
control_image=None,
|
92 |
+
controlnet_conditioning_scale=1.0,
|
93 |
+
num_inference_steps: int=20,
|
94 |
+
**kwargs) -> PIL.Image.Image:
|
95 |
+
|
96 |
+
out = self.pipe(prompt, control_image,
|
97 |
+
height=height, width=width,
|
98 |
+
num_inference_steps=num_inference_steps,
|
99 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
100 |
+
**kwargs).images
|
101 |
+
|
102 |
+
return out[0] if len(out) == 1 else out
|
103 |
+
|
104 |
+
def to(self, *args, **kwargs):
|
105 |
+
self.pipe.to(*args, **kwargs)
|
106 |
+
return self
|
107 |
+
|
108 |
+
|
109 |
+
class LooseControlNet(ControlNetPipeline):
|
110 |
+
def __init__(self, loose_control_weights="shariqfarooq/loose-control-3dbox", cn_checkpoint="lllyasviel/control_v11f1p_sd15_depth", sd_checkpoint="runwayml/stable-diffusion-v1-5") -> None:
|
111 |
+
super().__init__(cn_checkpoint, sd_checkpoint)
|
112 |
+
self.pipe.controlnet = attach_loaders_mixin(self.pipe.controlnet)
|
113 |
+
self.pipe.controlnet.load_attn_procs(loose_control_weights)
|
114 |
+
|
115 |
+
def set_normal_attention(self):
|
116 |
+
self.pipe.unet.set_attn_processor(AttnProcessor())
|
117 |
+
|
118 |
+
def set_cf_attention(self, _remove_lora=False):
|
119 |
+
for upblocks in self.pipe.unet.up_blocks[-2:]:
|
120 |
+
set_attn_processor(upblocks, CrossFrameAttnProcessor(), _remove_lora=_remove_lora)
|
121 |
+
|
122 |
+
def edit(self, depth, depth_edit, prompt, prompt_edit=None, seed=42, seed_edit=None, negative_prompt=NEGATIVE_PROMPT, controlnet_conditioning_scale=1.0, num_inference_steps=20, **kwargs):
|
123 |
+
if prompt_edit is None:
|
124 |
+
prompt_edit = prompt
|
125 |
+
|
126 |
+
if seed_edit is None:
|
127 |
+
seed_edit = seed
|
128 |
+
|
129 |
+
seed = int(seed)
|
130 |
+
seed_edit = int(seed_edit)
|
131 |
+
control_image = [depth, depth_edit]
|
132 |
+
prompt = [prompt, prompt_edit]
|
133 |
+
generator = [torch.Generator().manual_seed(seed), torch.Generator().manual_seed(seed_edit)]
|
134 |
+
gen = self.pipe(prompt, control_image=control_image, controlnet_conditioning_scale=controlnet_conditioning_scale, generator=generator, num_inference_steps=num_inference_steps, negative_prompt=negative_prompt, **kwargs)[-1]
|
135 |
+
return gen
|